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Abstract
In this paper we present a framework to aid in the selection of optimal environmental indicators for detecting and mapping 
extreme events and analyzing trends in heatwaves, meteorological and hydrological droughts, floods, and their compound 
occurrence. The framework uses temperature, precipitation, river discharge, and derived climate indices to characterize the 
spatial distribution of hazard intensity, frequency, duration, co-occurrence, and dependence. The relevant climate indices 
applied are Standardized Precipitation Index, Standardized Precipitation and Evapotranspiration Index (SPEI), Standardized 
Streamflow Index, heatwave indices based on fixed (HWI

S
 ) and anomalous temperatures (HWI

E
 ), and Daily Flood Index 

(DFI). We selected suitable environmental indicators and corresponding thresholds for each hazard based on estimated 
extreme event detection performance using receiver operating characteristics (ROC), area under curve (AUC), and accuracy, 
which is defined as the proportion of correct detections. We assessed compound hazard dependence using a Likelihood 
Multiplication Factor (LMF). We tested the framework for the case of Sweden, using daily data for the period 1922–2021. 
The ROC results showed that HWI

S
 , SPEI12 and DFI are suitable indices for representing heatwaves, droughts, and floods, 

respectively (AUC > 0.83). Application of these indices revealed increasing heatwave and flood occurrence in large areas of 
Sweden, but no significant change trend for droughts. Hotspots with LMF > 1, mostly concentrated in Northern Sweden from 
June to August, indicated that compound drought-heatwave and drought-flood events are positively correlated in those areas, 
which can exacerbate their impacts. The novel framework presented here adds to existing hydroclimatic hazard research by 
(1) using local data and historical records of extremes to validate indicator-based hazard hotspots, (2) evaluating compound 
hazards at regional scale, (3) being transferable and streamlined, (4) attaining satisfactory performance for indicator-based 
hazard detection as demonstrated by the ROC method, and (5) being generalizable to various hazard types.
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1  Introduction

Multi-hazard risk assessments have been developed to 
improve knowledge and management of complex climate 
risks towards a more integrated and holistic paradigm. 
Early mentions of multi-hazard research in Agenda 21 
on sustainable development (UNCED 1993) contributed 
to the spread of this concept, which is now considered 
an essential element of disaster-risk management (Kap-
pes et al. 2012). In this context, hydroclimatic hazards 
(heatwaves, droughts, floods) comprise a sub-category 
of natural hazards of particular interest due to their joint 
hydrological and atmospheric drivers and potentially dev-
astating consequences for society. Hydroclimatic hazards 
may be increasing in magnitude and frequency due to 
climate change, with major impacts on the environment, 
human health, and infrastructure (Stevenson et al. 2022). 
Heatwaves have been linked to increased mortality rates 
in Europe (Stagliorio Coelho et al. 2023) and accelerated 
spread of infectious diseases such as Covid-19 (Lian et al. 
2023). Droughts have direct negative impacts on agricul-
ture, energy production, and water supply (Freire-González 
et al. 2017). Flooding can severely damage critical societal 
infrastructure, disrupting livelihoods, water and food stor-
age, transportation, and energy supply networks (Inter-
governmental Panel on Climate Change (IPCC) 2023). 
Co-occurrence of these hydroclimatic extremes can also 
intensify their potential impacts (Zscheischler et al. 2018). 
In Europe, more than 100 cities are particularly vulner-
able to two or more types of adverse hydroclimatic effects 
(Guerreiro et al. 2018). Understanding the spatial-tempo-
ral and co-occurrence patterns of hydroclimatic hazards 
is critical for evaluating risks and selecting appropriate 
adaptation measures.

These patterns of hydroclimatic hazards can be identi-
fied using metrics derived from climate indices (Darand 
and Sohrabi 2018; Kirono et al. 2020; Serrano-Notivoli 
et al. 2022). Common metrics for droughts and wet peri-
ods include Standardized Precipitation Index (SPI) (Lloyd-
Hughes and Saunders 2002), Standardized Precipitation 
and Evapotranspiration Index (SPEI) (Vicente-Serrano 
et al. 2010), and Standardized Streamflow Index (SSI) 
(Modarres 2007). To identify and quantify heatwave 
events, a Heatwave Intensity Index (HWI) has been pro-
posed by the European Drought Observatory (Lavaysse 
et al. 2018). Using daily precipitation data, flood risks can 
be identified using Daily Flood Index (DFI), which has 
been applied in Australia, Fiji, and Bangladesh (Deo et al. 
2015, 2019; Moishin et al. 2021).

Depending on the spatial resolution of the input data, 
climate indices can estimate hazard characteristics rang-
ing from local to global scales. Although detection and 

experience of extreme weather events almost always occur 
and must be handled at local or regional level (Stone 
2019), multi-hazard studies on droughts, heatwaves, and 
floods have typically been limited to global or continen-
tal scale, where spatial averaging to some degree masks 
extreme values (Thompson et al. 2023). Therefore, addi-
tional applied local-regional studies are needed for devel-
oping relevant adaptation and societal protection strate-
gies. The shortcomings of large-scale approaches can be 
remedied to some extent through local observation data 
and locally validated models. Interpolation techniques 
can be employed to convert inputs into higher-resolution 
datasets that are more suitable for detecting extremes. 
The Kriging method has been widely applied to produce 
gridded time series from local observations of precipi-
tation rates (Darand and Sohrabi 2018; Hu et al. 2016) 
and streamflows (Teutschbein 2024). Based on machine 
learning, the Gaussian Process Regression technique has 
been successfully applied to spatially interpolate air tem-
perature (He et al. 2022) and daily precipitation (Kleiber 
et al. 2012).

Even though hydroclimatic indices may be able to quan-
tify hazard risks at a variety of spatial scales, such indices 
have only been developed for and tested in relatively few 
locations so far and it is important to further test their suit-
ability for applications in different geographical areas (Dik-
shit et al. 2021; Anshuka et al. 2019; Stenseth et al. 2003). 
Some studies have measured indicator performance through 
hit rate and false alarm ratios (Kumar et al. 2016) and best 
fitting models (Coscarelli et al. 2021). Uncertainty in climate 
change assessments is driven by a mismatch between climate 
models and actual observations, with input data quality play-
ing a significant role (Kundzewicz et al. 2018). Input data 
quality uncertainties are minimized and hazard exposure can 
be more reliably mapped in terms of frequency, intensity, 
and duration through climate indices, tested and validated 
against actual, independently recorded and reported extreme 
events.

By assessing and validating different climate indices for 
distinct source of risks, a common framework can be estab-
lished to reliably compare spatial and temporal variability 
of single hazard exposure, as well as potential compound 
effects of different hazards that may jointly lead to amplified 
impacts. Compound hazards have been typically classified as 
spatially compounding, temporally compounding, or precon-
ditioned events (Zscheischler et al. 2020). To quantify spa-
tially compounding hazards, i.e., co-occurring extremes at 
the same location, a likelihood multiplication factor (LMF) 
has been developed (Ridder et al. 2020).

The overall aim of this paper is to develop and test a 
data-driven and streamlined framework for identifying and 
mapping localized hotspots and analyzing trends in single 
and compound hydroclimatic hazards, thereby addressing 
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the need for region-specific multi-hazard assessments with 
locally available data and validated inputs. Novel contribu-
tions include this being the first known application of DFI 
for interpolated gridded datasets, as opposed to applications 
at specific observational sites, providing a spatial distribu-
tion of flood risks rather than just single-site risks. Addition-
ally, we also present in this study a novel application of LMF 
at regional scale, and identify the best representative indica-
tors for each type of hazard by use of the receiver operating 
characteristic (ROC) method (Rahmati et al. 2019) and by 
evaluating the hazard detection skill of different indicators 
against actual extreme events for a range of indicator value 
thresholds. The framework is developed and tested with the 
following specific objectives: (i) to comparatively investigate 
hydroclimatic indices for heatwaves, droughts, and floods 
based on available data for daily surface air temperature, 
precipitation, and river discharge; (ii) to test and validate 
the hazard detection ability of the different indices against 
historical records through the ROC method; (iii) to quan-
tify the spatial distribution of single hazard intensity, dura-
tion, frequency, and change trends in terms of the identified 
respective optimal indicators; iv) to evaluate the spatial vari-
ability and seasonality of hazard co-occurrence at regional 
scale by estimating joint return periods, LMF, and change 
trends in these over time.

Application of the developed framework can contribute 
to reducing uncertainties of climate change and enhancing 
emergency preparedness for separate and joint impacts of 

heatwaves, droughts, and floods. The results of this study 
also test the hypothesis that the intensity, duration, and fre-
quency of heatwaves, floods, and droughts are increasing 
due to climate change in the specific study area. Moreover, 
they test the hypothesis that these hydroclimatic extremes 
can produce compound effects with enhanced joint impact 
potential and important implications for disaster risk plan-
ning (Zscheischler et al. 2018).

The remainder of the paper is organized as follows. Sec-
tion 2 presents the proposed framework, information regard-
ing the study area, data collection, methodology to derive, 
validate and select hydroclimatic indices, and a procedure 
to evaluate single and co-occurring hazards. Section  3 
presents the results, Sect. 4 discusses specific and general 
study implications and limitations, and Sect. 5 summarizes 
the main study findings and makes suggestions for future 
research.

2 � Materials and methods

The framework developed consists of four main parts: (1) 
Data collection and processing; (2) validation and selection 
of indicators; (3) single hazard mapping; and (4) compound 
hazard mapping. Environmental indicators based on pre-
cipitation, temperature, and river discharge were compared 
against recorded extremes, to select suitable representations 
of heatwaves, floods, and droughts. Selected indicators were 

Fig. 1   Flowchart of the methodological study framework
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used to map the spatial distribution of hotspots and trends of 
single and co-occurring extremes in the study region (Swe-
den). The methodology is depicted in Fig. 1.

2.1 � Study area

The selected study area, Sweden, is located in Northern 
Europe (55–69 ◦ N; 11–24 ◦ E) and extends over three dis-
tinct climate zones according to the Köppen-Geiger climate 
classification (Beck et al. 2018). The southern region has a 
predominantly cold climate with warm summers, the central 
region and much of the northern region have a cold climate 
with cold summers, and part of the northern region has a 
polar climate (Fig. 2). Availability of hydrometeorological 
data from hundreds of weather stations in the last century 
makes Sweden a suitable case for investigating prolonged 
climate trends. The responsibility for implementing climate 
adaptation measures to maintain critical infrastructure ser-
vices and disaster prevention is shared by the 291 munici-
palities in Sweden, highlighting the need for local-regional 
hazard mapping around the country (Englund and Barquet 
2023).

2.2 � Data collection and processing

Data on all environmental parameters included in the anal-
ysis were retrieved from meteorological and hydrological 
observations available at the Open Data API (SMHI 2023b) 
provided by the Swedish Meteorological and Hydrologi-
cal Institute (SMHI). To consider long-term hazard trends, 
the study period used was the 100-year period 1922–2021. 
We retrieved daily maximum and minimum air temperature 
data from 838 SMHI observation stations, daily precipita-
tion data from 2038 meteorological stations, and modelled 
river discharge data from 448 locations. The river discharge 
data is provided by the national hydrological S-HYPE model 
system (Lindström et al. 2010), which is available at the Vat-
tenWeb database (SMHI 2024b). The hydrological model 
showed a deviation of ±10% for high flows and ±30% for 
low flows during the calibration period from 1999 to 2008 at 
401 gauging stations (Bergstrand et al. 2014). The discrep-
ancy between the number of gauging stations in the calibra-
tion reference and those in the dataset employed in this study 
is due to differences in model versions, with the most recent 
version as of March 2023 applied in this study. River dis-
charge rates were normalized by catchment size for compa-
rability, using 34149 sub-catchments with area above 1 km2 
provided by the SVAR database (SMHI 2024a). Figure 3 
shows the locations of retrieved data points of temperature, 
precipitation, and river discharge. Daily temperature and 3-, 
6- and 12-monthly accumulated precipitation datasets were 
spatially interpolated using Gaussian Process Regression 
techniques (Rasmussen and Williams 2005) to generate a 
gridded dataset (approximately 15 km × 15 km) with 100 
latitude bands and 100 longitude bands for Sweden.

In addition to the directly observed and modelled mete-
orological and hydrological variables, we also considered 
related climate indices from the literature, due to their capa-
bility to characterize hydroclimatic hazards. Standardized 
indices were selected according to data availability, requir-
ing precipitation, temperature, river discharge, geographical Fig. 2   The three main climate regions of Sweden

Fig. 3   Locations of meteorological and hydrological observations for Sweden obtained from SMHI Open Data API. Color and point size indi-
cate data availability period
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position, or a combination of these as inputs for practical 
implementation.

Heatwaves were investigated based on the Heatwave 
Index (HWIE ) proposed by the European Drought Observa-
tory (EDO) (Lavaysse et al. 2018) and its modified version 
based on SMHI’s definitions and thresholds for heatwaves 
(HWIS ). Daily HWIE is calculated as the average of the 
differences between daily maximum and minimum tem-
peratures and their corresponding thresholds. Hot days are 
defined by EDO as days when maximum Tx and minimum 
Tm temperatures are above calendar daily 90th percentiles Q 
and three consecutive hot days constitute a heatwave. HWIE 
is then obtained at coordinates i and j at time t as

According to SMHI’s definition for Sweden, heatwaves 
occur when the maximum daily temperature is above 25 ◦ C 
for five consecutive days (SMHI 2011). HWIS is calculated 
as the difference between the maximum daily temperature 
and 25 ◦ C, with positive values for hot days, expressed as

Adjusting the threshold allowed comparison of heatwave 
index performance based on absolute temperature, which 
may be more suitable for human health effects, against an 
index based on temperature anomalies, which is probably 
more suitable for assessing agricultural impacts (Lavaysse 
et al. 2018). Since heat-induced sensitivities vary signifi-
cantly by region, it is recommended that absolute temper-
ature thresholds are chosen according to local guidelines 
(Xiao et al. 2017; López-Bueno et al. 2021).

To quantify dry and wet season variability, we used Stand-
ardized Precipitation Index (SPI), Standardized Precipita-
tion and Evapotranspiration Index (SPEI), and Standardized 
Streamflow Index (SSI). SPI and SPEI are commonly used 
indicators of meteorological droughts, while SSI is an indica-
tor of hydrological droughts (Salimi et al. 2021). The stand-
ardized values of SPI, SPEI, and SSI typically vary from -2 
(extreme drought) to 2 (extremely wet season). Since higher 
accumulated values of SPI, SPEI, and SSI indicate wetter 
conditions, these indices have been applied to monitor flood 
events. For instance, SPEI at 6- and 12-months accumulation 
periods with defined threshold 0.5 have been employed to 
evaluate wet events in the Yangtze River Basin (Yang et al. 
2021), while SPI and SSI with threshold > 1 have been used 
to investigate the occurrence of floods in the Lake Chad in 
Africa (Nkiaka et al. 2017). We applied accumulation periods 
of 3, 6, and 12 months for these indices. SPI was calculated by 
fitting accumulated precipitation with gamma probability dis-
tributions and applying a transformation to convert cumulative 

(1)HWIEt,i,j
=

Txt,i,j − Qxt,i,j
+ Tnt,i,j − Qnt,i,j

2
.

(2)HWISt,i,j = Txt,i,j − 25.

probability distributions into the standard normal distribution 
(Lloyd-Hughes and Saunders 2002), obtained at month T as:

where:

The following coefficient values are provided from the lit-
erature: C0 = 2.515517 , C1 = 0.802853 , C2 = 0.010328 , 
d1 = 1.432788 , d2 = 0.189269 , d3 = 0.001308 . The prob-
ability of exceeding a determined monthly accumulated pre-
cipitation pAC was determined according to a gamma distri-
bution. An analogous approach was applied to derive SSI, by 
employing monthly accumulated mean daily discharge rates 
instead of precipitation. (Modarres 2007). Potential evapo-
transpiration was calculated using the Hargreaves method 
(Hargreaves and Samani 1985) through temperature and 
extraterrestrial radiation based on the location’s calendar 
day and latitude values. Monthly excess precipitation values 
were then employed to obtain SPEI (Vicente-Serrano et al. 
2010), written as:

where

The probability of exceeding a determined monthly accumu-
lated excess precipitation pEX was estimated according to a 
log-logistic distribution. If pEXT ,i,j

> 0.5 , the sign of the 
resultant SPEIT ,i,j in Eq. 6 is inverted.

Daily Flood Index (DFI) is a metric designed to assess 
the occurrence of pluvial and fluvial floods on a daily basis, 
using historical rainfall data (Deo et al. 2015). The calcula-
tion involves two crucial factors: Effective Precipitation ( PE ) 
and Available Water Resource Index (AWRI). PE is deter-
mined by adding up the daily rainfall values for the preced-
ing 365 days, adjusted by a time-based reduction function, 
written as:

(3)SPIT ,i,j = YT ,i,j −
C0 + C1YT ,i,j + C2Y

2

T ,i,j

1 + d1YT ,i,j + d2Y
2

T ,i,j
+ d2Y

3

T ,i,j

,

(4)YT ,i,j =

√

ln[
1

(pACT ,i,j
)2

for pACT ,i,j
≤ 0.5,

(5)YT ,i,j =

√

ln
1

(1 − pACT ,i,j
)2

for pACT ,i,j
> 0.5.

(6)SPEIT ,i,j = WT ,i,j −
C0 + C1WT ,i,j + C2W

2

T ,i,j

1 + d1WT ,i,j + d2W
2

T ,i,j
+ d2W

3

T ,i,j

,

(7)WT ,i,j =
√

−2 ln(pEXT ,i,j
) for pEXT ,i,j

≤ 0.5.

(8)PEt,i,j
=

365
�

t=0

�
∑t

m=0
Pm,i,j

t

�

.
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Where P is total daily precipitation. AWRI, indicating 
potential water availability, is derived by dividing PE by a 
weighted factor (Byun and Lee 2002), described as

This weighting factor operates as an exponentially temporal 
reduction function spanning 365 days. DFI was computed at 
each location in this study as the difference between the 
day’s PE and the mean of the highest daily precipitation 
1922–2021 ( PEmax

i,j
) , standardized by the standard deviation 

of the yearly maxima (�(PEmax

i,j

)):

While DFI can indicate flood danger, it does not estimate 
inundation areas or depth. More advanced techniques such 
as numerical modeling and detailed inputs would be required 
for this, which was outside of the scope of this study.

Table 1 shows the thresholds employed by each climate 
index to characterize extreme hydroclimatic conditions.

2.3 � Environmental indicator performance 
and selection

Since the performance of environmental indicators in detect-
ing extreme events varies for different regions, it is nec-
essary to compare their ability to correctly represent these 

(9)AWRIt,i,j =
PEt,i,j

Wt

,

(10)Wt =

365
∑

t=1

1

t
.

(11)DFIt,i,j =

PEt,i,j
− Pmax

Ei,j

�(Pmax

Ei,j
)

.

events. We compared the calculated climate indices and 
direct environmental parameters through the ROC method 
when selecting optimal indicators to be employed for map-
ping hazard hotspots and trends.

Lists of historical heatwave, drought, and flood events 
in Sweden were compiled from reports, articles, and fact 
sheets produced by SMHI and the Swedish Civil Contin-
gencies Agency (MSB). The lists included type of hazard, 
municipality affected, and start and end date (Tables S1-S3 
in Supplementary Material (SM)). In total, 10 heatwave, 
10 drought, and 311 flood events were cataloged. Heat-
wave events were retrieved from a list of municipalities 
with longest number of hot days per year and longest con-
tinuous period with daily average temperatures of at least 
22 ◦ C, from 1961 to 2010 (SMHI 2011). Drought events 
comprised water shortage periods from 1930 s to 2010 s 
with significant negative impacts on agriculture, water sup-
ply and hydropower production (SMHI 2023a), without dis-
tinction between drought types or consistent criteria between 
events. Flood occurrences were retrieved from an extensive 
catalog of significant inundation events from 1924 to 2010. 
These events were due to various reasons, including exces-
sive water levels in lakes, rivers and the sea, intense rain-
fall, snow melt, and stormwater system backflow (Alfreds-
son 2012). Indicator values of extreme event durations were 
retrieved at the nearest available location. Data on SSI, daily 
discharge, and precipitation were extracted from the nearest 
available source point. All other indicators were extracted 
from the interpolated grid dataset. For monthly datasets, the 
data were extracted at the nearest available time to the event 
(either before or after). Since droughts are longer events 
with imprecise documentation on beginnings and ends, this 
approximation does not significantly affect the detection per-
formance evaluation. To represent normal conditions, indi-
cator data were extracted for 10 random consecutive days 
over the 100-year study period in each Swedish municipal-
ity. The criteria for normal conditions were maximum daily 
temperature below 25 ◦ C and average SPI12 values between 
− 0.5 and 0.5. Having a control group under non-hazard 
conditions was employed to improve the performance evalu-
ation method. Applying the established criteria was useful 
for data rebalancing (Xue and Hall 2015), since, in reality, 
the number of days without hazards far exceeds the number 
of days when extremes occur.

Indicator performance was assessed using the selected 
evaluation metrics by comparing the hazard detection abil-
ity of the extracted indicator values at multiple thresh-
olds against documented historical hazards. Hazards were 
detected whenever a particular indicator triggered the tested 
threshold. Indicators were tested against extracted data dur-
ing their target hazard conditions and normal or non-hazard 
conditions, to ensure balanced data representation and more 
comprehensive testing results. Table 2 lists the minimum and 

Table 1   Standard thresholds for quantifying heatwaves, droughts and 
floods according to different climate indices

HWI
E
 , European Drought Observatory Heatwave Index; HWI

S
 , 

SMHI Heatwave Index; SPI, Standardized Precipitation Index; SPEI, 
Standardized Precipitation and Evapotranspiration Index; SSI, Stand-
ardized Streamflow Index

Climate Index Threshold Description

DFI > 0 Increased risk of flooding
HWI

E
 , HWI

S
> 0 Hot days, consecutive hot days 

indicates heatwaves (3 per EDO 
and 5 per SMHI)

− 1.0 to − 1.5 Moderate drought conditions
− 1.5 to − 2 Severe drought conditions
< −2 Extreme drought conditions
1.0 to 1.5 Moderate wet conditions
1.5 to 2 Severe wet conditions

SPEI, SPI, SSI > 2 Extreme wet conditions
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maximum threshold values tested and intervals for each indi-
cator and their corresponding hazards for detection. Intervals 
indicate the range of the tested thresholds, from minimum 
to maximum values. Threshold ranges and intervals were 
chosen to account for the entire distribution of the extracted 
data and yield complete ROC curves. Daily precipitation and 
discharge thresholds have variable intervals, so their entire 
sample distribution was tested more effectively through 
smoother ROC curves, since the distribution of those two 
variables skews towards smaller values due to the nature of 
catchment sizes and higher precipitation rates being signifi-
cantly less frequent. The variable threshold intervals were 
then determined by selecting eleven values corresponding to 
equally spaced percentiles from zero to 100. Daily precipi-
tation and normalized discharge rates were only applied to 
detect flood events with shorter duration, whereas accumu-
lated precipitation rates were tested for detecting droughts. 
The way in which a hazard is detected depends on whether 
its corresponding threshold is of lower-bound or upper-
bound type. Lower-bound thresholds indicate presence 
of hazards once the threshold value is exceeded, whereas 
upper-bound thresholds detect hazards when the indicator 
value falls below the threshold value. In this study, upper-
bound thresholds were used to detect droughts and lower-
bound thresholds to detect heatwaves and floods. For exam-
ple, if the observed SPI in a given month was less than or 
equal to the adopted upper-bound threshold of -1, drought 
was detected in that particular month.

Indicator performance is generally evaluated in terms 
of true and false positive rates. True positives occur when 
predicted hazards agree with documented actual hazards, 
while false positives occur when the hazard is wrongly 
detected by the indicator. The true positive rate represents 

the proportion of correctly identified hazards out of all actual 
hazards, while the false positive rate is the fraction of incor-
rect hazard identifications among instances where no hazard 
is present. The optimal threshold maximizes accuracy, which 
is the ratio between correct observations over the total obser-
vations, defined as:

where TP, TN, FP, and FN are the number of true posi-
tives, true negatives, false positives, and false negatives, 
respectively. Using true positive rates (TPR) and false posi-
tive rates (FPR), ROC curves can be created to illustrate the 
hazard detection skill of indicators under varied thresholds 
(Bradley 1997). The area under the curve (AUC) represents 
the overall ability of each indicator to discriminate between 
hazard conditions and normal conditions (Rahmati et al. 
2019). In the context of hazard detection, a higher AUC 
value implies that an indicator has a higher likelihood of cor-
rectly classifying hazards and non-hazards, which is a sign 
of its effectiveness in identifying the target conditions. An 
ideal indicator achieves an AUC score of 1, while an AUC 
score close to 0.5 suggests that indicator performance is no 
more effective than random chance (Guvenir and Kurtcephe 
2013). The ROC method has been applied in previous cli-
mate studies for evaluation of hydrological streamflow, flood 
and drought forecasts (Avand et al. 2021; He et al. 2018; 
Shin et al. 2020; Šípek and Daňhelka 2015).

2.4 � Mapping single and compound hazards

Mapping of heatwave, drought, and flood hotspots was per-
formed for single and compound hazards using the selected 

(12)Ac =
TP + TN

TP + TN + FP + FN
,

Table 2   Indicators and 
corresponding threshold 
range for evaluation of hazard 
detection skill

*This high value corresponds to an extreme discharge rate of 2026 m 3 /s occurring in May of 1984 when 
several municipalities were flooded along the Tornionjoki River in the county of Norrbotten, near the bor-
der between Sweden and Finland. While the corresponding yearly average river flow is approximately 
400 m3/s, the seasonal average discharge rate is much higher during spring thaw with severe ice breaks and 
even much higher discharge rates than that are plausible in combined events of both extreme precipitation 
and extreme snow and ice melt

Environmental Indicator Threshold 
(minimum)

Threshold 
(maximum)

Interval Hazard

3-Month Precipitation (mm) 0 500 20 Drought/Flood
6-Month Precipitation (mm) 0 800 20 Drought/Flood
12-Month Precipitation (mm) 0 1500 100 Drought/Flood
Normalized Daily Discharge (mm/day) 0 13518* Variable Flood
Daily Precipitation (mm) 0 200 Variable Flood
DFI − 4 4 0.5 Flood
HWI

E
 / HWI

S
 ( ◦C) − 25 10 1 Heatwave

Max. Daily Temperature ( ◦C) 1 41 2 Heatwave
Min. Daily Temperature ( ◦C) − 11 31 2 Heatwave
SPI/SPEI/SSI − 3.5 3.5 0.5 Drought/Flood
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indicators and thresholds to detect the start and end of the 
extreme events. First, spatial distributions of single hazard 
intensity, frequency, and duration were identified. Hazard 
duration was defined as the consecutive time period when 
the indicator threshold is exceeded. Hazard intensity was 
defined as the total sum of indicator values during the hazard 
duration, with daily frequency for heatwaves and floods and 
monthly frequency for droughts. Cumulative values over a 
decade were employed at each grid cell to describe histori-
cally critical areas. Projected changes in statistically signifi-
cant areas were estimated through Mann–Kendall testing of 
accumulated values over time. Trends were considered only 
for statistically significant areas where the null hypothesis of 
no effect or relationship was rejected (p = 0.05).

Compound hazards were defined as the co-occurrence 
of various hydroclimatic drivers and/or hazards within a 
particular geographical area (Zscheischler et al. 2020). For 
analysis of co-occurrence of all three possible hazard pairs, 
joint return periods were estimated as the inverse of the 
joint occurrence probability for each grid cell (Ridder et al. 
2020). To consider seasonal hazard variability, the analysis 
was conducted for each month of the year across the study 
period. Binary arrays X and Y were generated at every grid 
cell for each month of the year, to represent days when two 
distinct hazards occurred. A value of 1 was assigned for days 
when the indicator triggered a hazard, and 0 otherwise. A 
joint array Z to represent the intersection between the hazard 
pair was created as:

The joint probability P(X ∩ Y) for a particular month of the 
year was calculated as the ratio between the sum of days 
where both hazards in a pair occurred simultaneously and 
the total number of days in the study period:

where W is the number of joint occurrences. The joint return 
period was then computed at each grid cell as the inverse of 
the joint probability and converted from days to years by 
dividing by the average number of days per month:

To evaluate the spatial distribution of the dependence 
between hazard pairs, LMF was used (Zscheischler and 
Seneviratne 2017). This factor quantifies how co-occurring 
hazards are correlated, to investigate whether the occurrence 
of one hazard affects the likelihood of the other hazard hap-
pening, which could exacerbate their compound impacts. 

(13)Zi =

{

1, Xi = 1 ∩ Yi = 1

0, otherwise
.

(14)P(X ∩ Y) =

∑

t
Z∗(t, lat, lon)

ndays
=

W

ndays
,

(15)RP(X ∩ Y) =
1

P(X ∩ Y) × (
365

12
)
.

LMF was computed at each grid cell as the ratio between 
the observed probability of joint occurrence Pactual and the 
probability Pindep assuming complete independence between 
the hazards in each pair:

Positive correlation between hazards is found for LMF val-
ues above 1, while LMF = 1 implies independent hazards, 
and negative LMF values indicate a negative correlation 
between the hazards in each pair. Statistical significance 
of joint exceedance of paired hazard values was tested at 
5% level by employing a bootstrapping technique, which 
involves comparing 1000 resampled and actual time series 
(Ridder et al. 2020). This technique involves generating a 
resampled time series Y∗ and then recalculating joint arrays 
Z∗ with observed array X through equation 13 1000 times. 
Each time, the number of resampled realizations W∗ is cal-
culated as

where N is a noise array of random elements ranging from 
−0.0009 to 0.0009. The null hypothesis that joint exceedance 
by hazard X and hazard Y is introduced by random chance 
and does not involve any physical correlation between these 
hazards was rejected if the number of resampled realizations 
was higher than the number of observed realizations less 
than 5% of the time.

3 � Results

3.1 � Evaluation of hazard detection skill

Figure 4 shows the ROC curves used to assess the perfor-
mance of the various indicators in detecting specific haz-
ards for the whole of Sweden. For heatwave detection, the 
indicators HWIE , HWIS , and maximum and minimum daily 
temperature exhibited excellent discriminatory power, with 
AUC values approximately equal to the ideal score. These 
indicators achieved very high TPR at optimal thresholds 
(97–100%), while maintaining FPR below 0.8% at optimal 
thresholds. A minimum air temperature of 15 ◦ C or higher 
was strongly associated with heatwave occurrence. Such 
strong performance is expected for heatwave detection, 
since both the adopted definition of the hazard and all indi-
cators are based directly on air temperature data. HWIS with 

(16)Pactual =

∑

t
Z(t, lat, lon)

ndays
,

(17)Pindep =

∑

t
X(t, lat, lon)

ndays
×

∑

t
Y(t, lat, lon)

ndays
.

(18)W∗ =
∑

t

Z(t, lat, lon) + N,
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AUC = 1.00 and positive values was selected here as the best 
indicator for detecting and describing heatwaves in Sweden.

The indicators for drought detection also demonstrate 
good performance (average AUC = 0.73), indicating strong 

discriminatory ability. Optimal thresholds corresponding 
to maximum accuracy for tested drought indices were all 
negative, consistent with the standard thresholds from the 
literature. Detecting historical droughts can be challenging 

Fig. 4   Receiver operating characteristic (ROC) curves, area under the curve (AUC), and optimal thresholds (dots) of heatwave (a), drought (b), 
and flood (c) indicators. Optimal thresholds and area under curve are indicated as topt and AUC, respectively
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due to the subjectivity inherent in their definition and the 
simultaneous influence of multiple factors, including pre-
cipitation, river discharge, groundwater level, and soil mois-
ture. Drought indices with higher accumulation periods (12 
months) showed slightly stronger performance. SPEI12 ≤ −1 
was selected to evaluate droughts in Sweden, due to its com-
bination of high AUC and TPR (0.86 and 55%, respectively). 
This threshold corresponds to moderate to severe drought 
periods (Vicente-Serrano et al. 2010).

Flood detection was more challenging than detection of 
droughts and heatwaves. Some indicators, such as DFI and 
daily precipitation rates, performed reasonably well, with 
AUC values above 0.70, whereas others such as SPEI, SPI, 
and SSI show lower AUC values, suggesting limited dis-
criminatory ability. These results suggest that, even though 
monthly standardized indicators can specify wet seasons, 
daily frequency indicators are required to detect flood events 
with reasonable accuracy. DFI with AUC = 0.83 was chosen 

here as the indicator to characterize floods in Sweden, with 
positive values representing increased danger.

Overall, the results indicate that the selected heatwave 
indicators are highly effective in hazard detection, the 
drought indicators are moderately effective, and the flood 
indicators vary in their effectiveness, with some more suc-
cessful than others in discriminating between true positives 
and false positives.

3.2 � Hotspots and trends in hydroclimatic hazards

3.2.1 � Heatwaves

Heatwave mapping performed using the intensity index 
based on the SMHI definition (HWIS > 0 ◦ C) showed areas 
with 90th percentile decadal cumulative heatwave intensity 
and duration during the study period, and areas with the 
highest occurrence of heatwaves (Fig. 5). The 90th percentile 

Fig. 5   Hotspots and trends in heatwave intensity, duration, and frequency in Sweden (SMHI heatwave Index, HWI
S
)
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cumulative decadal heatwave duration was up to 131 days 
in southeast Sweden. The highest heatwave intensity in the 
100-year study period was observed in July 2018 in Kalmar 
County, in the south-east of Sweden. The most intense heat-
wave was also the longest observed, lasting 31 days in total. 
The total number of heatwaves detected in Sweden in the 
study period ranged from less than five near Kiruna in the 
far north to 111 in Södermanland County in the south-east. 
Heatwaves were found to be relatively less intense in coastal 
areas than inland areas, which can be attributed to cool-
ing effects of coastal upwelling in the Baltic Sea (Suursaar 
2020). Frequency analysis showed that heatwaves can be 
expected to occur on average at least once per year in most 
of Sweden, mainly in the period from June to August, but 
that occurrences are also possible in May, August, and Sep-
tember, especially in southern Sweden.

The yearly maxima of daily HWIS were spatially aver-
aged across grid points in Sweden to describe long-term 
trends (Figure S1 in SM). The spatially averaged intensity of 
heatwaves steadily increased from the beginning of the time 
series, reaching its highest value in 2018. Decadal increase 
or decrease trends investigated using Pearson’s correlation 
coefficient at every grid point indicated increasing heatwave 
intensities in heavily populated areas in southern and east-
ern Sweden. Increasing trends in heatwave frequency and 
duration were also found for large areas in the south of the 
country. If these trends persist, heatwaves in critical southern 
areas may become one day longer and contain two more hot 
days per year on average by 2032.

3.2.2 � Droughts

Drought hotspots and trends in Sweden were examined using 
SPEI12 with threshold ≤ −1 . The spatially averaged SPEI12 
values (Figure S2 in SM) revealed occurrence of extreme or 
severe droughts during the periods 1933–1934, 1947–1948, 
1959–1960, 1976, 2003, and 2018–2019, which is consist-
ent with historical records (SMHI 2023a). The driest month 
overall in Sweden was October 1947, which corroborates 
records showing that this year had one of the lowest annual 
average precipitation rates ever experienced, with major 
water shortages in many parts of Sweden (SMHI 2019). 
Over the long term, there was a consistent upward trend in 
the occurrence of wet seasons, which can be attributed to 
an overall increase in precipitation rates. This precipitation 
trend co-occurs with a temperature increase trend of climate 
warming, expected also to increase evapotranspiration rates.

Drought hotspots and trends from SPEI12 results are 
shown in Fig. 6. The most robust correlations between 
drought intensity, duration, frequency, and the emergence 
of prominent patterns were observed when these metrics 
were aggregated over a span of one decade. For consistent 
map visualization, drought intensities were inverted to yield 

absolute values. Drought duration at the decadal cumulative 
90th percentile was longest in Halland County, located on 
the south-west coast of Sweden, reaching 86 months in the 
decade 1933–1942. This region also experienced the highest 
frequency of droughts, with dry months observed 22% of the 
time. Although the northernmost Swedish counties showed 
a relatively high frequency of droughts, this did not coincide 
with increased drought intensity or longer duration in those 
northern areas.

When droughts were catalogued and ranked accord-
ing to their total intensity, the most intense drought event 
observed in the study period occurred in Norrbotten County, 
covering the most northern part of Sweden, between 1945 
and 1948, with a total absolute SPEI12 intensity of 65.5 
lasting 35 consecutive months. Most of the severe drought 
events in Sweden occurred before the 1960s, with only a few 
events occurring since 2000. Nevertheless, notable drought 
events were also identified in recent times, including some 
extended drought periods in Södermanland County, located 
just south of the capital Stockholm on the central to south-
eastern coast of Sweden, from August 2016 to January 2018 
and from September 2018 to November 2019. Over most of 
the country, no statistically significant drought trends were 
identified at 5% significance level using the Mann–Kendall 
method, with the exception of some areas in the west show-
ing decreasing trends and a few locations in the southeast 
indicating some small localities with increasing frequency 
trends.

3.2.3 � Floods

Mapping of flood hazard hotspots and trends produced for 
positive DFI values (Fig. 7) showed a widespread distribu-
tion of localized areas with higher flooding risks (Figure S3 
in SM). Spatial correlation was observed between decadal 
cumulative flood hazard metrics, with an average correlation 
coefficient of 0.95 between intensity and duration, and 0.45 
between intensity and frequency. At 90th percentile level, 
up to 38 flood-prone periods were observed at hotspots in a 
decade, while decadal cumulative flood hazard conditions in 
some areas reached up to 428 days. In periods identified as 
having the highest flood intensities, flood conditions some-
times persisted continuously for over 100 consecutive days. 
Historical records confirmed that the majority of these peri-
ods resulted in actual flooding events. Analysis of monthly 
patterns during the study period revealed a significant surge 
in the occurrence of flood conditions in July, reaching a 
peak in September, and gradually subsiding but remaining 
at elevated levels until the end of January.

The average number of days per year with flood con-
ditions in Sweden increased during the study period, 
from on average 2.14 days in 1922–1971 to 5.35 days in 
1972–2021. A further increase to an average of 8.11 days 
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during 2022–2071 can be projected if the trend continues. 
Increasing flood trends were observed for large areas in the 
southwest and north of Sweden. The trends suggest a pos-
sible extra three days per year with flood risk and one extra 
flood risk event per year on average after the next decade. 
This increasing trend is consistent with an observed increase 
of precipitation rates over Sweden (Teutschbein et al. 2022).

3.3 � Compound hazard occurrence and dependence

Spatiotemporal patterns in compound hydroclimatic hazards 
were investigated by determining joint return periods of 
monthly hazard pairs and LMF for each hazard pair (Fig. 8, 
Figure S4 in SM). Three hazard pairs were considered: 
heatwave and drought, heatwave and flood, and drought and 
flood. The most frequent hazard co-occurrence observed was 
for droughts and heatwaves from June to August, peaking 
in July in southern Sweden. The LMF values indicated that 

heatwaves and droughts are independent in most regions 
during summer months, but positively correlated in the 
northern region, which may lead to higher compound haz-
ard impacts there.

Co-occurrence of heatwave and flood conditions was 
observed only for the summer months of July and August, 
with very low joint exceedance probabilities. This low co-
occurrence can be attributed to temperature drop effects of 
precipitation, e.g., due to enhanced evaporative cooling, and 
more cloud cover and air mass changes. Dependence analy-
sis showed that this hazard pair was primarily characterized 
by a negative correlation, but LMF did not explain whether 
heavy rainfall is intensified if preceded by a heatwave, as 
it does not account for preconditioning or temporal delays 
between hazard events.

Compound drought and floods were more frequent in 
Sweden in the months from August to November (the wet 
season). Hotspots with lower return periods were observed 

Fig. 6   Hotspots and trends in drought intensity, duration, and frequency in Sweden (Standardized Precipitation and Evapotranspiration Index, 
SPEI12)
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in most southern and most northern parts of the most north-
ern Swedish landscape, Norrland, where LMF indicated that 
these two hazards are positively correlated. Flood impacts 
in these areas can be exacerbated by increased runoff after 
very dry soil conditions that reduce soil permeability. In 
most other areas, droughts and floods are either negatively 
correlated or independent.

Dividing the study period into two 50-year periods 
(1922–1971 and 1972–2021) allowed assessment of change 
trends in compound hazard frequency and dependence. 
Figure S5 in SM shows the relative LMF change between 
the sub-periods for all compound hazard pairs. Heatwaves 
and droughts were overall the most critical hazard pair, 
with increasing correlation in most areas. Some areas of 
LMF decrease were also observed for joint heatwaves and 
droughts, but the magnitude of decrease was much lower 
than the magnitude of increase in other areas. The changes 
in return periods indicate that compound heatwaves and 
droughts are becoming more frequent in eastern Sweden, 

with return period decreasing by more than 100 years in 
some locations (Figure S6 in SM). Hotspots of increasing 
droughts and flood co-occurrence were observed at specific 
locations in the months from July to November. Some very 
few areas of co-occurring heatwaves and floods were found 
in August in both 50-year periods. The changes in LMF 
imply that the correlation in pairs of hazards varied spa-
tially, but also temporally, due to various contributing factors 
affecting the local hazard interactions. This temporal varia-
tion indicates that it is not only individual hazards which are 
changing, but also their interdependencies, possibly leading 
to amplified consequences.

4 � Discussion

Application of the framework developed in this study to 
the case of Sweden supported the hypothesis that the inten-
sity, duration, and frequency of heatwaves and floods are 

Fig. 7   Hotspots and trends in flood intensity, duration, and frequency in Sweden (Daily Flood Index, DFI)
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increasing across most of the country. The most intense 
heatwave detected in the 100-year study period occurred in 
2018 and caused significant impacts in Sweden, resulting 
in hundreds of excess deaths (Åström et al. 2019; Wilcke 
et al. 2020). However, an increasing trend was not seen for 
droughts. The tendency observed for wetter conditions in the 
country, with increasing flood risk and decreasing drought 
risk, is consistent with findings in a recent study on stream-
flow droughts in Sweden (Teutschbein et al. 2022) and in a 
continental integrated analysis (Lehner et al. 2006). Previous 
research suggests that this warming-wetting tendency with 
climate change may be caused by changes in the atmospheric 
circulation pattern (Zhang et al. 2013). The analysis of LMF 
and joint return periods indicated that certain regions of 
Sweden may experience increased impacts of co-occurrence 
of droughts and heatwaves, as well as droughts and floods 
with compound effects. Using daily frequency and a long 
study period provided a large sample dataset, with statisti-
cally significant observed trends and correlations.

In general, use of indices with relevant selected thresh-
olds instead of directly measured variables for detection of 
extreme events has the advantage of clearly defined hazard 
start, end, and intensity, thereby reducing subjectivity and 
facilitating estimation of associated intensity, duration, and 
frequency trends. The ROC curve analysis proved useful 
for indicator validation against historical extreme events, 
and in selection of relevant indicators and thresholds in a 
regional context. Evaluation results for hazard detection per-
formance showed similar findings as in previous studies. 
For example, selecting SPEI with accumulation period of 12 
months as the best drought predictor is in line with conclu-
sions from a previous drought risk assessment for Europe 
(Blauhut et al. 2016). The optimal SPEI threshold selected 
here corresponds to previously identified moderate drought 
conditions (Vicente-Serrano et al. 2010). Additionally, the 
selected DFI > 0 threshold matches a previously recom-
mended criterion for identifying periods of flooding (Deo 
et al. 2015). ROC curve analysis highlighted the limitations 
of using monthly indicators, such as SSI, SPI, and SPEI, to 
detect short-term flood events, point at the need for finer 
temporal resolution of these indices for use in relevant flood 
hazard indices (Zhang et al. 2023). Overall, the statistical 
techniques applied to accumulate the daily precipitation 
values in DFI improved flood representation ability com-
pared to the other tested flood indices outlined in Table 2. 
Similar techniques applied to river discharges at refined time 
scales (daily or hourly) could potentially further improve 

flood detection ability. However, testing of this improvement 
potential would require development of a new flood index 
and an associated in-depth investigation of how to formulate 
it based on discharge variation patterns that commonly dif-
fer greatly from the variation patterns of precipitation (e.g., 
Quin and Destouni (2018)), which DFI is based on. Such a 
new flood index investigation and formulation is not within 
the scope of the present comparative study of already formu-
lated and used indices based directly on commonly available 
data for the whole considered study area and study period. 
As a main novelty, this study presents the first known appli-
cation of a gridded DFI, instead of individual station data 
analysis. The gridding facilitates assessment of flood hazard 
conditions but further investigation is needed to explicitly 
evaluate the performance of the index at ungauged locations 
through cross-validation.

Assessment of individual hazards can provide good 
insights for regional planners, helping them prioritize areas 
with a higher frequency of extreme events and showing the 
likelihood of future hazard increases or decreases. Assess-
ment of compound hazards can further complement these 
insights by offering additional information on areas that 
may be overlooked in individual hazard assessment, but 
where compound effects can exacerbate the hazard magni-
tude (Zscheischler et al. 2018) or create new vulnerabilities 
(Englund and Barquet 2023). Early warning prediction sys-
tems are also needed to decrease vulnerability and impacts 
of hydroclimatic hazards (Lal et al. 2012). The approach 
developed here can be employed in developing and evaluat-
ing such early warning systems, based on its ability to iden-
tify appropriate indicators for hazard and critical hotspot 
detection, indicating which hazards to prioritize. Optimal 
thresholds identified from actual historical occurrences of 
extremes are likely to represent actual high risks of impacts 
on infrastructure, communities, and disaster response.

This study has four major limitations. First, the num-
ber of available measurements in the first few decades 
of the study period is relatively low, possibly leading to 
inaccuracies in spatial interpolation. Even though these 
interpolation inaccuracies could lead to imprecise hotspots 
and trends, satisfactory results from the ROC method for 
an extensive range of years and locations show that these 
uncertainties are not severe. Moreover, air temperature 
does not vary significantly between nearby observation 
stations, so this limitation would mostly affect precipita-
tion, discharge rates, and associated indices. Second, the 
hydroclimatic data are limited to information available up 
to December 2021, as the openly reported data must first 
go through quality checks at the agency responsible, and 
thus data for the most recent years of extreme events are 
missing. Third, soil moisture is a critical hydroclimatic 
variable for quantification of local-regional droughts (Orth 
and Destouni 2018) and their temporal trends (Destouni 

Fig. 8   Distribution of likelihood multiplication factor (LMF) for dif-
ferent hazard pairs, based on the entire study period (1922–2021). No 
co-occurrences were observed in white areas. Grey areas represent 
grid cells where the exceedance probability was not statistically sig-
nificant according to the bootstrapping method

◂
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and Verrot 2014) and possible predictive drought mod-
elling (Kan et al. 2023), which was not included in this 
study due to lack of sufficiently long data time series. This 
data limitation exemplifies and highlights the challenges 
and uncertainties of studying long-term extreme event 
trends even in data-rich regions such as Sweden. Fourth, 
since climate indices are statistical and not process-based 
models, they lack detailed explanatory power to describe 
specific hydrometeorological processes causing the emer-
gence of the hotspot patterns or trends.

Further research is needed to transform the hazard maps 
produced here into risk maps that also consider the con-
sequences associated with the probabilities of the extreme 
events (Lavell et al. 2012). In this context, consequences are 
a function of the hazard intensity, exposure, and vulnerabil-
ity. The approach developed in this study produces hazard 
intensities and probabilities. In order to also assess associ-
ated risks, important values and assets that can be adversely 
affected and their characteristics that make them susceptible 
to damage need to be assessed. The outputs of the approach 
in this study can be combined with relevant socio-economic 
and other impact data for hydroclimatic hazards to opera-
tionalize the concept of dynamic vulnerability (Kuran et al. 
2020). Further studies are also required to investigate possi-
ble hazard preconditioning with time lags between extremes, 
such as possible exacerbation of floods by dry soil condi-
tions after droughts.

Novel contributions of the methodology developed in this 
study include the: (1) evaluation of how well various indica-
tors represent actual hydroclimatic hazards at local-regional 
level, (2) spatial distribution of patterns and trends of single 
hazards, and (3) mapping of co-occurring compound hazards 
and their characteristics and trends. The approach for map-
ping single and compound hydroclimatic hotspots and trends 
using associated high-resolution indicators is generalizable 
to other climate indices and types of hazards. Development 
of this multi-hazard approach addresses a priority for the 
IPCC (Lal et al. 2012) and the Sendai Framework (UNDRR-
WMO 2022). To our knowledge, there are no other multi-
hazard approaches for assessing hydroclimatic extremes at 
local-regional scale for single and compound hazard hotspots 
and trends of heatwaves, droughts, and flood risks. Previous 
studies have focused on hot-dry extremes (Laz et al. 2023; 
Hu et al. 2023; Wang et al. 2021), or continental-global scale 
(Claassen et al. 2023; Ridder et al. 2020; Zscheischler et al. 
2018). The approach presented in this study is holistic, using 
multiple methods to assess multiple hazards starting from 
fundamental data collection to generation of results, support-
ing risk management for both single and compound effects. 
Transferability of the method can be hindered by lack of 
availability of high-quality data in other geographical areas, 
especially river discharge rates and catchment areas. The 
results obtained for Sweden exemplify one application of 

the framework, which can be readily adapted to different 
contexts and local needs by varying the input indicators.

5 � Conclusions

This paper presents a novel multi-hazard approach for mapp-
ping hotspots and analyzing trends in floods, heatwaves, 
droughts, and their co-occurrences Using hydroclimatic 
indicators based on temperature, precipitation, and dis-
charge data from thousands of observation stations over a 
century for the application case of Sweden, indicator perfor-
mance was evaluated by direct comparison against histori-
cal extreme events at local-regional scale, to select optimal 
hazard indicators and thresholds. The best performing indi-
cators for detecting hydroclimatic hazards in Sweden were 
found to be HWIS , SPEI12, and DFI for heatwaves, droughts, 
and floods, respectively. Overall, these indicators can accu-
rately describe the associated hazards, while monthly indi-
ces, have limited detection capability for short-term flooding 
events. The results revealed increasing trends for heatwave 
and flood hazards in Sweden, and hotspots of compound 
drought-heatwave and drought-flood extremes with possible 
exacerbated societal impacts by this hazard co-occurrence. 
Future research should focus on comparing hazard detection 
skills between local and global sources, developing models 
of socio-economic and other societal risks, and early warn-
ing systems for single and compound hydroclimatic hazards. 
Our approach and results can guide such research, predictive 
model and early warning developments, and practical adap-
tation and protection planning, by revealing critical hazard 
hotspots and trends, and indicating associated areas with 
possible high impacts.
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