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ABSTRACT 21 

Riparian vegetation planting and management are vital to river engineering projects. To inform 22 

these activities, science needs to provide practitioners with a better understanding of influences 23 

on recruitment and where vegetation will most likely establish and survive. This study 24 

investigated whether the spatially explicit recruitment of Populus fremontii (Fremont 25 

cottonwood), a dominant riparian species in the western USA, could be predicted along a 26 

dynamic, alluvial regulated river. We used a ~ 34-km segment of the Yuba River in California, 27 

USA, which was mapped in 2017 after a large flood reset the terrain. Five years later from 28 

August through November 2022, a field campaign characterized precise locations of juvenile 29 

cottonwoods. We evaluated predictions from deterministic and statistical models. For the 30 

deterministic test, a spatially distributed riparian seedling recruitment model was used with 31 

expert-estimated parameters. The model was not accurate in this case but was informative. For 32 

the statistical approach, a supervised classification Random Forest (RF) algorithm, driven by 33 

2017 hydrophysical and topographic variables, was trained and cross-validated using 2022 34 

cottonwood presence and absence observations. The RF model had an overall accuracy of 87% 35 

and an AUC-ROC value of 94%, with the most important variables being the detrended DEM, 36 

channel proximity, and inundation survival. Topographic variables were much more significant 37 

than hydrophysical ones. Further developments to understand underlying governing equations 38 

and recruitment model parameters will draw on lessons from the RF model. Both deterministic 39 

and statistical models are recommended to evaluate riparian vegetation restoration designs, as 40 

each yields unique insights. 41 

 42 
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Keywords: Riparian seedling recruitment, ecohydraulics, machine learning, river revegetation, 43 

cottonwood 44 

1 INTRODUCTION 45 

The anthropogenically driven degradation of riverine ecosystems poses a serious problem 46 

in the arid and semiarid regions of western North America, where water resources are often 47 

intensely regulated for human needs by dams and diversions (Hauer & Lorang, 2004; Poff et al., 48 

2003). Western U.S. riparian forests are now remnants of varying size and quality, and habitat-49 

forming foundational species are severely impacted (Abell, 1989; Braatne et al., 1996; Patten, 50 

1998). The current crisis is expected to be worsened by the growing effects of regional climate 51 

change, such as intensified disturbance regimes, declining water supply, and even more 52 

infrastructural development (e.g. Dettinger et al., 2015). 53 

Cottonwoods (Populus) are a foundation (Ellison et al., 2005; Whitham et al., 2006) and 54 

dominant riparian tree species in this region (Braatne et al., 1996; Patten, 1998). Riparian trees 55 

stabilize channel banks, provide rich wildlife habitats, maintain biodiversity, create shade and 56 

shelter, and produce streamwood (Gregory et al., 1991; Naiman et al., 1993). River engineering 57 

projects and long-term management programs seek to restore and conserve cottonwood forests, 58 

and an inability to accurately predict cottonwood seedling recruitment poses a constraint on these 59 

efforts. 60 

To untangle impediments on riparian vegetation conservation, this study tested the ability 61 

of existing scientific theory and methods to accurately predict locations of cottonwood 62 

recruitment throughout a regulated, dynamic river corridor by implementing the state of 63 

knowledge in two different modeling approaches, one deterministic and one statistical. The 64 
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physical processes and environmental conditions included in the two models were further 65 

explored to examine the conditions needed for both natural recruitment and for accurately 66 

predicting recruitment. Prediction accuracy was evaluated using field observations of young 67 

cottonwoods, yet the novelty of this work lies in exploring outcomes of different prediction 68 

approaches and how those outcomes can inform riparian ecology and conservation. 69 

1.1 Cottonwood Seedling Recruitment 70 

Cottonwood recruitment occurs both sexually through seeds and asexually as clonal 71 

processes. Riparian regrowth by seedling recruitment is important to maintain, as it supports 72 

genetic diversity, offsets losses due to mortality, and is the primary method of colonization for 73 

this pioneer species (Braatne et al., 1996; Dixon et al., 2012; Mahoney & Rood, 1998; 74 

Stromberg, 1993). Seedling recruitment is dependent on several hydrophysical processes which 75 

occur seasonally over an annual growing season. However, suitable recruitment conditions may 76 

not occur every year. 77 

Bare surfaces are created when flows high enough to induce sediment mobilization 78 

uproot existing vegetation, clear away ground cover and detritus, and/or bury young vegetation 79 

by depositing sediments. When high flows recede, cottonwoods may colonize suitable areas of 80 

newly deposited sediment and moist open ground (Friedman et al., 1995). These barren surfaces 81 

are important to pioneer species like cottonwoods, which are shade intolerant and poor 82 

competitors, making access to full sunlight critical for seedling growth and development 83 

(Braatne et al., 1996; Johnson 1994). Mature cottonwoods produce an abundant number of seeds 84 

every year that are primarily dispersed by water (Braatne et al., 1996; Karrenberg et al., 2002; 85 

Moggridge & Gurnell, 2010; Stromberg, 1993). With a limited dispersal period and a seed 86 
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viability that quickly declines (Braatne et al., 1996; Mahoney & Rood, 1998; Stella et al., 2006), 87 

cottonwoods have adapted to dynamic riparian environments by using climatic signals to couple 88 

their seed release with spring snow melt pulses. Annual variability in the timing and magnitude 89 

of flows results in some years with more prolific recruitment than others (Dixon et al., 2012; 90 

Scott et al., 1997; Stromberg, 1998). 91 

Cottonwoods are dependent on the groundwater table and the associated capillary fringe 92 

in the substrate for moisture. For germination to occur, substrate requires continual moisture for 93 

the first few weeks of establishment (Cooper et al., 1999; Fenner et al., 1984). After germination, 94 

surface moisture conditions and receding water table rates impact the success of seedling growth 95 

and development (Amlin & Rood, 2002; Stella et al., 2010). Seedlings must be able to grow 96 

sufficiently long roots to reach the receding water levels (Stromberg, 1993), with drought stress 97 

or mortality for seedlings where the water table recedes faster than their roots can grow (Amlin 98 

& Rood, 2002; Mahoney & Rood, 1991; Stella et al., 2010). 99 

Areas where cottonwood seedlings colonized may then be vulnerable to high flows with 100 

sufficiently intense hydraulic forces that result in scouring or depositional processes, risking 101 

mortality (Politti et al., 2018). When these large flows result in areas flooded with slow moving 102 

or stationary water, erosional and sediment transport impacts are less (Amlin & Rood, 2001). 103 

However, prolonged inundation over multiple weeks can also be stressful or lethal to seedlings 104 

as it can lead to oxygen depletion in the root zone (anoxic conditions), root growth suppression, 105 

reduce transpiration, and root decay (Amlin & Rood, 2001; Auchincloss et al., 2012). Impacts to 106 

a seedling and the number of inundation days it can survive are dependent upon the age and size 107 

of the seedling, as well as the depth, clarity, and temperature of the water (Auchincloss et al., 108 

2012; Friedman & Auble, 1999). 109 
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1.2 Riparian Vegetation Modeling 110 

Solari et al. (2016) and You et al. (2015) provided summaries of models analyzing 111 

vegetation within dynamic riparian environments. These models include effects of vegetation on 112 

hydro-morphodynamics by influencing flow resistance (Järvelä, 2004; Luhar & Nepf, 2013), 113 

sediment transport (Lopez & Garcia, 1998), or bank dynamics (Bertoldi et al., 2014; Zong & 114 

Nepf, 2011), and the reverse of hydro-morphodynamics on vegetation by impacting seed 115 

dispersal (Groves et al., 2009; Merritti & Wohl, 2016), recruitment (Mahoney & Rood, 1998), or 116 

mortality and woody debris inputs (Edmaier et al., 2011; Gregory et al., 2003; Haga et al., 2002; 117 

Villanueva et al., 2014). Mathematical models also vary in purpose to analyze systems at the 118 

individual (Scott et al., 1999), population (Clipperton et al., 2003; Phipps, 1979), or community 119 

(Camporeale & Ridolfi, 2006) level. In addition, these mathematical models may differ by being 120 

deterministic, statistical-empirical, or statistical-stochastic, or a combination thereof 121 

(Jajarmizadeh et al., 2012). 122 

This study used the Riparian Seedling Recruitment Model (RSRM), a two-dimensional 123 

(2D) spatially distributed, deterministic algorithm designed to determine the theoretical 124 

suitability of locations for riparian seedling recruitment by predicting the potential success for a 125 

seedling to survive through its first year of life (Phillips & Pasternack, 2022). The conceptual 126 

basis of the RSRM is the 'recruitment box model’ (Mahoney & Rood, 1998), which relates the 127 

timing and inter-annual pattern of stream stage to the physiological needs for cottonwood 128 

seedling recruitment. The approach is similar to other spatially distributed models for riparian 129 

tree seedling recruitment (Benjankar et al., 2014, 2020; Stella, 2005; Tranmer et al., 2023), but 130 

includes several novel developments that promote spatially-explicit mechanistic realism and 131 

practical utility for not only river assessment but also river ecological engineering design 132 
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(Phillips & Pasternack, 2022; Phillips et al., 2025). The RSRM is implemented in free, open-133 

source software called River Architect (Schwindt et al., 2020; https://riverarchitect.github.io). 134 

Time, finances, site accessibility, and other such local constraints may prevent in situ 135 

collection of environmental variables or measurements necessary to calibrate a numerical 136 

deterministic model. Nevertheless, the ways in which a given model is uncertain and its levels of 137 

accuracy and precision can serve as indicators of the state of understanding of a phenomenon. 138 

Alternatively, a small sample of data might be better used for training a statistical-empirical 139 

model, such as an artificial intelligence machine learning (AI/ML) model when there is an 140 

abundance of remote sensing data, especially environmental variables derived from airborne 141 

LiDAR (Diaz-Gomez et al., 2025; Guisan et al., 1999; Rew et al., 2005; Shoutis et al., 2010; 142 

Vogiatzakis & Griffiths, 2006). 143 

One such ML procedure is the Random Forest (RF), which uses classification trees to 144 

repeatedly split the input data into more homogenous groups using different combinations of 145 

explanatory variables (Breiman, 2001). RF’s allow for the exploration of prediction patterns and 146 

processes through the use of both discrete and continuous explanatory variables, variable 147 

importance measures, and graphical representations. A previous study by Diaz-Gomez et al. 148 

(2025) used a RF with topographic metrics derived from airborne LiDAR to predict where 149 

vegetation had successfully established on the same testbed river as this study. Presence and 150 

absence points of naturally established vegetation were randomly selected from LiDAR-derived 151 

data and used with 17 topographic predictor variables, ultimately achieving an accuracy metric 152 

(i.e., AUC) of 77% (Diaz-Gomez et al., 2025). The workflow created by Diaz-Gomez et al. 153 

(2025) was modified for this study to predict presence and absence of juvenile cottonwoods. 154 

about:blank
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1.3 Research Questions 155 

The goal of this study was to evaluate the state of cottonwood seedling recruitment 156 

predictability when addressing a real river in need of active conservation measures. To achieve 157 

this goal, both a deterministic and a statistical-empirical model were used to explore the potential 158 

explanatory power each approach offers. The testbed observational dataset was obtained by a 159 

labor-intensive effort to precisely locate and measure 2,957 young cottonwoods, which is notable 160 

compared to coarser polygon-level riparian zone evaluations in past studies. The deterministic 161 

model implemented mathematical equations describing hydrophysical processes and was 162 

coupled with empirically derived biophysical cottonwood metrics. The statistical model explored 163 

empirical relationships between environmental variables and cottonwood presence/absence. Each 164 

approach makes different assumptions and provides unique, valuable insights. We asked three 165 

research questions that focused on juvenile cottonwoods of five years old or younger, defined as 166 

< 5 m tall (Braatne et al., 1996; Nagler et al., 2005; Zamora-Arroyo et al., 2001). 167 

First, how do predicted cottonwood seedling recruitment locations from a deterministic 168 

model compare to field locations of juvenile cottonwoods? We hypothesized that field locations 169 

of juvenile cottonwoods would occur in the more favorable and optimal recruitment locations 170 

predicted by the deterministic model, because this approach models hydrophysical processes 171 

(e.g. scouring flows, seed dispersal, inundation periods, and stream and water-table recession) 172 

important for cottonwood seedling recruitment. Second, how do the field locations of juvenile 173 

cottonwoods compare to presence/absence classification predictions by the statistical RF 174 

algorithm? Due to the use of both hydrophysical variables important for cottonwood seedling 175 

recruitment and topographic variables that capture the heterogeneity and small-scale variations in 176 

terrain needed for maintaining riparian vegetation diversity, enough spatial information should 177 



 

9 
 

be available for successful model predictions. Third, do the most important hydrophysical and 178 

topographic variables ranked by the RF algorithm explain suitable conditions for recruitment and 179 

cottonwood presence and absence? Both topographic and hydrophysical variables were included 180 

as potential predictor variables, with the distance from and elevation above the wetted channel 181 

hypothesized to be the most important drivers in juvenile cottonwood presence. This is based on 182 

terrain-hydrology-cottonwood establishment relationships, as seeds are deposited in receding 183 

flood flows along the active channel margins to create recruitment bands (Braatne et al., 1996; 184 

Mahoney & Rood, 1998; Scott et al., 1997; Stromberg, 1993), while recruitment elevations are 185 

dependent on an access to moisture that does not result in scouring by high flows at lower 186 

elevations or drought stress at higher elevations (Mahoney & Rood, 1998; Scott et al., 1997). 187 

Given the set-up and analysis of two different types of models in one article to enable 188 

comparison and synthesis, many details are provided in the Supplementary Materials. 189 

2 STUDY SETTING 190 

The lower Yuba River (LYR) is a ~ 37.5-km-long, gravel-cobble regulated river in 191 

northern California’s Central Valley. The Yuba catchment drains 3,480 km2 of the western Sierra 192 

Nevada Mountains before reaching the confluence with the Feather River (Figure 1). This area 193 

has a subtropical climate, experiencing cool, wet winters and hot, dry summers. The LYR’s 194 

hydrology is driven by winter rainstorms and spring snowmelt, with most of the annual 195 

precipitation occurring between November and March. Flow to the LYR is partially regulated by 196 

dams and diversions (YCWA, 2013), including 79-m-high Englebright Dam and 7.3-m-high 197 

Daguerre Point Dam (both mining sediment barrier dams), but to a less degree than for other 198 

rivers in the region (Escobar-Arias & Pasternack, 2011). 199 
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 200 

 201 

 202 

Figure 1. Lower Yuba River (LYR) map and location within northern California.  203 

An estimated 280,209,355 m3 of hydraulic mining sediment was created within the 204 

Yuba’s catchment during and after California’s Gold Rush between 1852 and 1906 (James, 205 

2005), with almost 90% of it remaining there by the 1980’s (Adler, 1980). Sedimentation 206 

aggraded the LYR’s natural channel by 8-26 m (Adler, 1980; Gilbert, 1917) and changed the 207 

channel pattern. The deposition of unconsolidated mining sediment buried pre-existing riparian 208 

vegetation and may have altered riparian conditions by reducing the extent and diversity of 209 

vegetation, covering the existing soil with debris, and may have altered the capillary fringe and 210 

impacted soil moisture availability for roots (YCWA, 2013). 211 

While the historic river valley underwent dramatic changes, the containment of flow into 212 

a smaller corridor where it has been for many decades has by now yielded a remarkably dynamic 213 

river responding to a dynamic flow regime (Gervasi et al., 2021). Aerial photographs from 1937 214 



 

11 
 

to 2010 present a cumulative increase in riparian vegetation along the LYR (YCWA, 2013). 215 

Many woody species are supported, including in order from more abundant to least, varying 216 

willow species (Salix spp.), Fremont cottonwood (Populus fremontii), blue elderberry (Sambucus 217 

nigra ssp. caerulea), black walnut (Juglans hindsii), Western sycamore (Platanus racemosa), 218 

Oregon ash (Fraxinus latifolia), white alder (Alnus rhombifolia), tree of heaven (Ailanthus 219 

altissima), and grey pine (Pinus sabiniana) (YCWA, 2013). However, even though riparian 220 

vegetation is increasing, the river still has large expanses of unshaded terrain. 221 

3 METHODOLOGY 222 

3.1 Experimental Design 223 

The novelty of this research lies in exploring how the outcomes of different prediction 224 

approaches inform the science of riparian ecology and the practice of riparian conservation, 225 

especially with the difficult challenge of matching individual organism locations. To answer the 226 

questions posed, an experimental design was developed integrating high-resolution geospatial 227 

data and biological data (Figure 2). To answer the first question investigating how predicted 228 

seedling recruitment locations compared to field locations of juvenile cottonwoods, the Riparian 229 

Seedling Recruitment Model (RSRM) was used to predict seedling recruitment potential along 230 

the LYR for the years 2017-2021. Among deterministic models for this purpose, none had yet 231 

been tested against individual organism locations, let alone a large dataset of 2,957 locations 232 

spanning a long length of river. To answer the second question evaluating a statistical-empirical 233 

model’s prediction accuracy for cottonwood presence/absence, a Random Forest (RF) algorithm 234 

was used with topographic variables and hydrophysical outputs from the RSRM as predictor 235 

variables. For the third question, a ranking of variable importance generated by the RF was used 236 
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to investigate the top ranked predictor variables and their biophysical sensibility for cottonwood 237 

recruitment. 238 

 239 

 240 

Figure 2. Experimental design and structure for the use of a deterministic and statistical model. 241 

The orange color follows the design for the Riparian Seedling Recruitment Model (RSRM), the 242 

blue follows the Random Forest (RF), and the grey represents overlapping data or questions. 243 

Methods used to explore model accuracy have a dashed outline.  244 
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3.2 Riparian Seedling Recruitment Model (RSRM) 245 

As this was the first application of a novel model, there were no pre-existing model 246 

parameter value sets from past calibrated models to use as a starting point to parameterize this 247 

model and inform the field campaign. Further, in the absence of any pre-existing seedling 248 

observational data, model parameter sets could not be calibrated in advance. This component of 249 

the study did not seek to implement a post hoc framework in which the answers would be used to 250 

tune the model. Instead, the approach was consistent with how this type of model might be 251 

implemented in conservation practice for project planning and design in the absence of pre-252 

existing data. Thus, physically realistic values were chosen on an expert basis with reference to 253 

the literature on Fremont cottonwoods and then newly collected observational data was used to 254 

test how well the model performed with the expert-based values. Commonly, models do not 255 

perform well without calibration, even when they are supposed to be physically realistic, but it is 256 

important to do that testing at the outset with a new model to help evaluate whether the scientific 257 

understanding underlying model structure and model parameterization is literally true and 258 

accurate enough for prediction. 259 

3.2.1 Hydrophysical variables 260 

Four hydrophysical processes were used in the RSRM to evaluate whether suitable site 261 

conditions for recruitment were met: 262 

(1) Preparation of the bed through higher flows generating a large enough dimensionless bed 263 

shear stress to create new bare surfaces before seed dispersal, 264 

(2) Desiccation or drought survival from stream stage and groundwater recession, 265 

(3) Survival during prolonged inundation periods,  266 
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(4) Scour survival from flows with a high enough dimensionless bed shear stress for scouring 267 

effects after germination. 268 

Threshold values were set in the RSRM to evaluate whether hydrophysical processes 269 

created suitable conditions needed for seedling recruitment and survival (Table 1). The RSRM 270 

uses the wetted area extents for the maximum and minimum flows during the seed dispersal 271 

period to create the spatial domain for areas of possible germination. An existing vegetation map 272 

was included to remove areas with established vegetation from analysis, as these are areas with 273 

competition for sunlight and moisture. 274 

 275 

Table 1. Criteria set for the physical processes in the RSRM by Phillips & Pasternack, 2022, 276 

where the metric code was given depending on where a cell fell within the criteria for each 277 

condition and the bed shear stress was divided into the bed preparation phase and the scour 278 

survival phase. The seed dispersal period reflects the recruitment box in Mahoney & Rood, 1998. 279 

Process Criteria Condition Metric 

Seed Dispersal Period May 2 - July 4   

Bed Shear Stress 
(Bed preparation / 
scour survival) 

0.047 
 

0.030 
 
 

0.000 

Fully prepared / Fully disturbed 
 

Partially prepared / Partially 
disturbed 

 
Unprepared / Undisturbed 

1 / 0 
 

0.5 / 0.5 
 
 

0 / 1 

Mortality Coefficient 
(Desiccation survival)  

< 20 days 
 

20-30 days 
 

>30 days 

Favorable 
 

Stressful 
 

Lethal  

1 
 

0.5 
 

0 

Inundation < 14 days 
 

14 
 

Favorable 
 
Stressful 

 

1 
 

0.5 
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28 Lethal 0 
 280 

3.2.2 Model inputs 281 

The mean daily flow record was collected at different points along the LYR (Table S4). 282 

The physical processes and parameter settings in the RSRM allow for user defined values based 283 

on the species of interest. Flow records were defined to start two years prior to the year of 284 

interest to evaluate if an area is prepared for germination through the sediment mobilizing flows 285 

that create bare surfaces. May 2nd was set as the beginning of cottonwood seed dispersal and 286 

marks the beginning of the year of interest for analysis. The years analyzed in this study were 287 

2017 to 2021, requiring the mean daily flow record for the years of 2015 to 2022. 288 

Spatial data inputs used in RSRM modeling included topography, hydraulics, sediment 289 

grain size, and vegetation raster data. Topographic data and derivative variables were available 290 

from a 0.91-m resolution 2017 digital elevation model (DEM) (Table S1). The DEM came from 291 

a point cloud integrating airborne LiDAR, boat-based multi-beam echosounder, and ground-292 

based RTK GPS surveys (Silva & Pasternack, 2018; Gervasi et al., 2021). Steady-state, spatially 293 

explicit hydraulic rasters for velocity, depth, and water surface elevation (WSE) were available 294 

from a validated two-dimensional (2D) hydrodynamic model simulated using TUFLOW HPC 295 

with outstanding performance (Pasternack, 2023; Table S2 & Table S3). A total of 45 flows 296 

from 8.5-2,464 m3/s were used, covering the range of discharges that occurred on the LYR for 297 

the years of interest. Grain size data for the LYR was available for 2017 from a previous study 298 

that used a RF algorithm based on LiDAR data and grain size samples from the field to create a 299 

sediment facies map (Díaz Gómez et al., 2022). The average grain size was approximated for 300 
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regions not included within the mapped area. An existing 2017 vegetation map created from 301 

LiDAR data was used to identify areas of established vegetation (i.e., taller than 0.6 m). 302 

As the DEM and vegetation map were created in 2017 and the study domain is too large 303 

to re-map topo-bathymetry and grain-size metrics annually, we applied a fixed topography and a 304 

fixed grain-size map in the RSRM for the study period. That choice is supported by the study 305 

years of 2017-2022 being a dry period of ecological recovery after geomorphically significant 306 

flooding in early 2017. Floods during the study period were of modest magnitude and short 307 

duration, with duration having been found to be very important to this river’s morphodynamic 308 

volatility (Gervasi et al., 2021). Assessment of the validity of this assumption is presented in 309 

discussion section 5.1. 310 

 311 

 312 

Figure 3. The LYR with the three modeling domains (MRYFR, DPDMRY, and EDDPD), 313 

gaging stations, and dams. MRYFR encompasses the segment immediately downstream of the 314 

Marysville gaging station to the confluence with the Feather River, DPDMRY extends from 315 

Daguerre Point Dam to the Marysville gaging station, and EDDPD is from the Englebright Dam 316 

to Daguerre Point Dam. The blue region of the river represents the section that was used for field 317 

data collection. The dashed line within EDDPD represents where this domain was split into two 318 

hydrological sections.  319 
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 320 

The study area (Figure 3, blue) was split into three different RSRM modeling domains 321 

for computational and analysis efficiencies. Further, the Dry Creek tributary inflow and an 322 

irrigation diversion at Daguerre Point Dam (Figure 3) required use of three different discharge 323 

data sources. The inflow from Dry Creek required the upstream modeling domain to be split into 324 

two hydrological sections (Table S4). 325 

3.2.3 Recruitment potential predictions 326 

After applying constraints to the hydrophysical processes, the recruitment potential for a 327 

given cell is determined. The metric for each hydrophysical process is weighted by a coefficient 328 

and then the product of those terms is computed to create recruitment predictions at a 0.46-m2 329 

resolution (Table 2). This method is a common approach in environmental science and 330 

management (Leclerc et al., 1995; Renard et al., 1997). In the absence of any prior knowledge, 331 

all coefficients were given the same value of 1.0. Each hydrophysical process was weighted 332 

equally when computing the recruitment potential classes. 333 

 334 

Table 2. Final recruitment potential classes from Phillips & Pasternack, 2022. 335 

Description Stressful Parameters Combined Value 

Optimal 0 1 

Favorable 1 0.5 

Stressful 2 0.25 

Tolerable 3 0.125 

Likely lethal 4 0.0625 

Lethal - 0 
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 336 

3.2.4 Field site selection 337 

Site selection was made on an equal-effort basis (Johnson, 1980; Manly & Alberto, 2014) 338 

using a two-way stratification. Observation sites were stratified based on the RSRM-predicted 339 

recruitment potential class map and three longitudinal river sections used as 2D modeling 340 

domains. An equal number of randomly selected sites from within each class were surveyed 341 

(Figure 4). As a goal, ≥ 10 sites per class across the LYR were to be sampled, with 3-4 sites per 342 

class in each modeling domain (Figure 3). Sites that were inaccessible, unsafe, or highly 343 

impacted were excluded. 344 



 

19 
 

 345 

 346 

Figure 4. Workflow for field site selection. Mode refers to calculating that statistical variable for 347 

each raster. This process was repeated for each modeling domain illustrated in Figure 3. 348 

 349 
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The first step that had to be done was to divide the river domain into a population of 350 

potential sampling sites. Following the method of Wyrick and Pasternack (2014), the LYR’s 351 

river-corridor centerline was stationed and sectioned into 31-m longitudinal rectangles, laterally 352 

spanning the wetted area of the highest discharge of 2,384-m3 for 2015-2022. These rectangles 353 

were then split along the centerline to create 2253 sites. Due to meandering and topographic 354 

nonuniformity, site lateral extents and areas varied. While sites technically extended into the 355 

water, we only observed dry land beyond the low-flow water’s edge present during field work. 356 

Figure 5 illustrates sampling sites. 357 

The RSRM has 6 values, or classes, for annual recruitment potential, so in the second 358 

step we sought to have an equal number of sampling sites for each class. One complication is 359 

that the study period spanned 5 years, so each river location has 5 classes. To resolve this, we 360 

calculated the mode (i.e. the most frequently occurring class) of annual recruitment potential to 361 

represent the recruitment potential over the study period in each modeled grid cell. 362 

Another complication is that a potential sampling site may have more than one class in its 363 

area. To account for that, we then converted the raster of mode recruitment classes into polygons 364 

and “unioned” those polygons with the sampling sites from step one, so that every sampling site 365 

was now subdivided by areas of mode recruitment potential class. 366 

We then developed a procedure to distinguish whether a class was sufficiently abundant 367 

in a site for that site to be appropriate to use as a sample of that class. Aligned with this concern 368 

was that consideration that it is not meaningful, logistically easy, cost-effective, or representative 369 

to sample within very small areas, so we sought to remove small class polygons from process of 370 

selecting field sites. To do that, the two-way polygons of recruitment class and sampling site 371 

were filtered and grouped by class in each model domain. A rectangle could be grouped multiple 372 
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times if it contained more than one class. The median area for each class within each model 373 

domain was then calculated and used as a size threshold, eliminating sampling sites with a class 374 

area below the median from selection. For example, imagine a site that has 3 m2 of class 3 and 375 

400 m2 of class 4 in it. Such a site is not representative of class 3, so would have been eliminated 376 

from consideration for representing class 3 but kept for that purpose for class 4. Remaining 377 

sampling sites with a class area above the median were assigned random numbers. Sampling 378 

sites numbered one through five were given priority for field observation, with considerations for 379 

safety and accessibility sometimes necessitating going to the next lower ranked priority site. 380 

3.2.5 LYR field data collection 381 

Field sites were surveyed August through November 2022 (Figure 5). For sites that had 382 

cottonwoods, the height and diameter was collected from every individual present (Figure 6). A 383 

survey-grade Trimble R8 RTK GPS receiving real-time corrections from a commercial regional 384 

benchmark network was used to record geographic coordinates (horizontal accuracy of ~ ± 3 cm) 385 

of every cottonwood observed within the site. 386 

 387 
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 388 

Figure 5. LYR field sites within the modeling domains. The map is split at Daguerre Point Dam 389 

(DPD). The downstream of DPD is the left image and upstream of DPD is the right. 390 
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 391 

Figure 6. An example field site (A) and methods for data collection: B) measuring height with a 392 

tape measure, C) diameter above the root collar with a caliper, and D) DBH with a diameter tape. 393 

 394 

A total of 2,957 juvenile cottonwood locations were recorded within the boundaries of 70 395 

sampled sites. The recruitment class of ‘Likely Lethal’ had less sampled classes due to the way 396 

the RSRM calculates recruitment classes (Table 3). Most sites in DPDMRY were at the 397 

upstream and downstream ends, as the middle could only be reached by kayak. EDDPD was 398 

fully accessible. 399 

 400 

Table 3. Number of recruitment classes sampled per domain. 401 

Recruitment Class 

Domain Lethal Likely 
Lethal 

Tolerable Stressful Favorable Optimal Total # 
Sites  

MRYFR 4 0 4 2 0 0 10 

DPDMRY 5 0 7 4 6 5 27 

EDDPD 6 4 6 6 6 5 33 

Total # 
Sites 

15 4 17 12 12 10 70 
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 402 

3.2.6 RSRM bioverification 403 

An evaluation of RSRM prediction accuracy was performed through a method termed 404 

bioverification, comparing the number of recorded locations of juvenile cottonwoods within each 405 

area of recruitment potential classes modeled (Kammel et al., 2016; Moniz et al., 2020). 406 

Bioverification uses an electivity index to evaluate two criteria. First, there must be at least one 407 

recruitment potential class exhibiting preference and at least one exhibiting avoidance to 408 

demonstrate that the model can differentiate conditions. Second, the electivity index must 409 

increase as recruitment potential increases from class to class (Kammel et al., 2016). Many 410 

electivity indices exist, but given the abundance and simplicity of this data, the classic forage 411 

ratio (FR) was used. It was calculated as the ratio of the percent of cottonwood observations in 412 

the mode recruitment potential class (i.e., percent occurrence, aka utilization) to the percent area 413 

of that class (i.e., percent availability). A FR > 1 indicates an organism’s preference for a habitat, 414 

while a FR < 1 indicates an avoidance. The further from 1.0 a FR value is, the more a habitat is 415 

preferred or avoided by the designated organism. A FR ≈ 1 for a class indicates behavior 416 

indistinguishable from random and cannot be attributed to a species showing preference or 417 

avoidance for that class in the model. A second set of FR values were also computed using the 418 

2017-2021 maximum recruitment potential class values for a given cell (Table S7; Figure S2). 419 

3.3 Random Forest Algorithm 420 

A RF supervised classification algorithm was used to address the second research 421 

question (Figure 7), modifying the RF model previously used to predict and analyze all riparian 422 
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vegetation on the LYR (Diaz-Gomez et al., 2025). A two-step pre-processing was undertaken to 423 

prepare predictors and a binary response variable of presence or absence. The values of each 424 

predictor were then extracted at each binary response variable location and used in the caret 425 

package in R (Kuhn, 2008) to perform the RF and generate hypothesis-testing metrics. The 426 

number of trees used was 500 as the conservative default value needed to stabilize the prediction 427 

accuracy (Maxwell et al., 2018; Diaz-Gomez et al., 2025). The number of predictor variables 428 

randomly sampled at every node was defined by a grid-search method with a resolution of 1, 429 

with node values between 1 and the number of variables (20) (Probst et al., 2018, Zhang et al., 430 

2020, Diaz-Gomez et al., 2025). 431 

 432 
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 433 

Figure 7. Data processing and RF machine learning model workflow. 434 

3.3.1 Binary response variable 435 

For the supervised classification, cottonwood presence and absence were used as the 436 

binary class variable. Field locations of juvenile cottonwoods were used to indicate presence 437 

cells at 0.91-m resolution. Cells that fell within cottonwood clusters were classified as presence, 438 

with no differentiation made between cells containing one or more cottonwoods. As a result, the 439 

2,957 observed juvenile cottonwood locations were reduced to 1,349 presence cells. An equal 440 

number of absence cells were randomly created without duplication in any one cell within 441 
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surveyed sites after excluding presence cells, resulting in a total of 2,698 samples for model 442 

training and testing. 443 

3.3.2 Predictors 444 

Twenty variables were chosen for predicting juvenile cottonwood presence or absence, 445 

using the four hydrophysical variables from the RSRM and 16 DEM-derived topographic 446 

features characterizing the terrain in 2017 (Table 4). The RSRM created 0.46-m resolution 447 

rasters for the four 2017 hydrophysical rasters, which were later resampled to the same 0.91-m 448 

resolution as the DEM and the subsequent topographic variables. Topographic variables were 449 

numerically continuous, while hydrophysical variables had three discrete values (Table 4). As a 450 

sensitivity analysis, the RF was run multiple times with varying categories of the predictor 451 

variables to compare performance metrics, with those results in Supplementary Materials. 452 

 453 

Table 4. Predictor variables consisting of the hydrophysical processes rasters produced by the 454 

RSRM and topographic rasters produced from the 2017 LYR DEM. 455 

Predictor Indicator of  Source 

Bed Preparation Preparation of the ground before seed dispersal by 
scouring flows to clear existing vegetation and 
debris.  

 
1 = fully prepped, 0.5 = partially prepped, 0 = 
unprepared 

(Phillips & 
Pasternack, 
2022) 

Recession Rate Rate of stream stage and water table decline 
compared to seedling root growth. 

 
1 = favorable rate, 0.5 = stressful rate, 0 = lethal 
rate 

(Phillips & 
Pasternack, 
2022) 
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Inundation Survival Inundation length impacts on seedlings.  
 

1 = favorable inundation, 0.5 = stressful 
inundation, 0 = lethal inundation 

(Phillips & 
Pasternack, 
2022) 

Scour Survival Impact of scouring from higher flows after 
germination.  

 
1 = undisturbed, 0.5 = partially disturbed, 0 = 
fully disturbed 

(Phillips & 
Pasternack, 
2022) 

Detrended Elevation 
(m) 

Removes the down-valley slope while preserving 
local topographic variations 

(Pasternack et 
al., 2018) 

Channel Proximity (m) Distance of a cell to the 2017 wetted baseflow 
(~1,000 cfs).  

 
Influences the depth to the water table, inundation 
duration and depth, and distance to the river 
(Auchincloss et al., 2012). 

ArcGIS Pro 

Flow Direction  Direction of flow from every cell to its steepest 
downslope neighboring cell 

ArcGIS Pro 

Flow Accumulation Accumulated flow to each cell ArcGIS Pro 

Topographic Profile Direction of maximum slope by being upwardly 
convex (-), upwardly concave (+), or flat (0).  

 
Characterizes surface moisture accumulation, 
flow and speed of water by gravity, erosion and 
deposition of sediments. 

(Evans & 
Murphy, 2023) 

Topographic Planform Perpendicular to the maximum slope by being 
laterally concave (-), laterally convex (+), or flat 
(0). 

 
Characterizes surface moisture accumulation, 
flow and speed of water by gravity, erosion and 
deposition of sediments. 

(Evans & 
Murphy, 2023) 

Topographic Curvature 
(McNab) 

Surface curvature index based on features 
confining the view from the center of a 3x3 
window (McNab, H.W. 1989).  

 

(Evans & 
Murphy, 2023) 
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Characterizes surface moisture accumulation, 
flow and speed of water by gravity, erosion and 
deposition of sediments. 

Topographic Slope Rate of elevation change or steepness at each cell 
(degrees). Steeper terrain has a higher slope while 
flatter terrain has a smaller slope.  

ArcGIS Pro 

Lateral Relative Aspect Pixel direction facing toward (-) or away (+) from 
the river 

(Diaz-Gomez & 
Pasternack, 
2021) 

Longitudinal Relative 
Aspect 

Pixel direction facing downstream or upstream (Diaz-Gomez & 
Pasternack, 
2021) 

Topographic Position 
Index (TPI) 

Difference in elevation between a cell’s central 
point and the average elevation of its nearest 
neighbors. The central point is higher (+) or lower 
(-) than its average surroundings (De Reu et al., 
2013).  

 
Describes local topographic heterogeneity  

(Hijmans, 2023) 

Terrain Ruggedness 
Index (TRI) 

Ruggedness by calculating the sum elevation 
change between a cell and the 8 nearest 
neighbors. Smaller values are less rugged, greater 
values are more rugged. 

 
Provides an indicator of topographic 
heterogeneity (Riley et al., 1999). 

(Hijmans, 2023) 

Roughness  Difference between the maximum and minimum 
value of a cell and its 8 surrounding neighboring 
cells. 

(Hijmans, 2023) 

Vector Ruggedness 
Measure (VRM) 

Terrain ruggedness by measuring 3-D vector 
dispersion. Ranges from 0 (flat) to 1 (rugged). 

 
Captures both aspect and slope for a measure of 
terrain heterogeneity (Sappington et al., 2007). 

(Evans & 
Murphy, 2023) 

Surface Relief Ratio 
(SRR) 

Rugosity of a continuous surface within a 
specified window. 

 
Expresses topographic geometry (Pike & Wilson, 
1971).  

(Evans & 
Murphy, 2023) 
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Pixel-Scale 
Topographic Variability  

LiDAR point standard deviation within a pixel. (Weber & 
Pasternack, 
2017) 

 456 

3.3.3 Implementation 457 

The repeated k-fold cross-validation resampling method (Kuhn & Johnson, 2013) was 458 

used for RF implementation, where k indicates the number of groups the dataset is split into (10 459 

herein). The observations at 0.91-m resolution were divided into 10 subsets (or folds) of equal 460 

size, each with 269 samples. One group is a holdout for validation and nine train the model, 461 

repeated 10 times until every group has trained and validated the model. 462 

3.3.4 RF model performance 463 

The RF model was tested for the same two performance indicators as the RSRM – 464 

differentiation of presence/absence locations and whether the directionality of the variables 465 

matched biophysical mechanistic sensibility. Differentiation was evaluated using several metrics, 466 

beginning with an averaged confusion matrix to portray the number of correct and incorrect 467 

predictions by the RF in terms of the overall accuracy, producer’s and user’s accuracy, and 468 

omission and commission errors (Fawcett, 2006; Sokolova & Lapalme, 2009). The next 469 

assessment used the area under the curve (AUC) for the receiver operator characteristic (ROC) 470 

(Fawcett, 2006). 471 

Biophysical mechanistic sensibility was also evaluated with several methods. 472 

Permutation-based feature importance (Breiman, 2001) and partial dependence plots (PDPs) 473 

(Friedman, 2001) evaluated variable importance and helped interpret how each predictor affected 474 
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the presence of cottonwood given everything else is the same. Then the median, upper quartile, 475 

and lower quantile values for the more important predictors were inspected to evaluate 476 

differences in presence and absence locations. The directionality of the predictor-cottonwood 477 

relationship and the predictor extent of presence and absence conditions were evaluated against 478 

biophysical reasoning. 479 

4 RESULTS 480 

4.1 Cottonwood Recruitment Patterns 481 

A higher density of cottonwoods was located downstream of DPD than upstream of it 482 

(Figure 8). Downstream of DPD recruitment for seedlings that germinated in the 2022 summer 483 

was observed to be in sporadic dense patches, located mostly on lateral and point bars, islands, or 484 

along backwater and abandoned channels. Newly formed and dynamic islands were also found to 485 

have dense clustering of seedlings. Juvenile cottonwoods that were not in their first growing 486 

season were found in scattered stands among other riparian species, such as willows, or by 487 

themselves. There were dense and robust stands of mature cottonwoods observed in these 488 

regions. 489 

Upstream of DPD, a dense seedling cluster was found on an active point bar. However, 490 

juvenile cottonwood locations were more scattered and individual in this section. Moving 491 

upstream, the surfaces became barer and had less vegetation present. A smaller number of 492 

mature cottonwoods was observed in this segment. 493 

 494 
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 495 

Figure 8. Heat map of surveyed cottonwoods along the LYR with two perspectives, one 496 

downstream of DPD and one above. 497 

4.2 Question 1: Does the RSRM accurately predict cottonwood seedling presence? 498 

Among the total of 2,957 young cottonwood presence locations used in the forage ratio 499 

(FR) calculations, 1,408 presence points were located within RSRM modeled results and 1,550 500 

presence points were outside modeled areas (because the RSRM considers this area beyond the 501 

modeled wetted area during seed dispersal). Four recruitment potential classes had FR values 502 

indicating avoidance, while one (“tolerable”) had a value indicating preference (Table S5; 503 

Figure 9). These results meet the first criteria that requires the occurrence of both preference and 504 

avoidance to be exhibited by separate classes, which can be seen in Figure 9. However, the 505 

second criteria which requires that the FR, the percent of cottonwood occurrence to the percent 506 

area available for each recruitment class, increase as the recruitment potential increases, was not 507 



 

33 
 

met. The FR calculated using the 2017-2021 maximum recruitment potential class values, 508 

instead of the mode, did not change overall results (Table S6; Figure S2).  509 

 510 

 511 

Figure 9. Forage ratio test results using the 2017-2021 mode recruitment class values for the 512 

expert-parameterized implementation of the RSRM. The class that represented “tolerable” 513 

recruitment potential was the only one that resulted in an FR indicating preference. 514 

4.3 Question 2: Does the RF Model accurately predict presence and absence? 515 

When compared with the testing data, the averaged confusion matrix of the RF prediction 516 

portrayed an overall accuracy of 87% of correctly predicting either an absence or presence point 517 

with a p-value < 2e-16 (Table 5). The RF model had a higher accuracy for predicting presence, 518 

while still obtaining the goal of having a good balance between the producer and user accuracies 519 

for presence and absence. The model performed well with an AUC-ROC of 94%, reaching this 520 

value with 8 variables available at each tree node (Figure 10). Remarkably, even a single 521 
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variable produces an AUC-ROC > 90% and adding just three more variables increases the 522 

overall accuracy to 93%. 523 

 524 

Table 5. The averaged confusion matrix for the RF repeated cross-validation scheme, with the 525 

bolded values representing the correctly classified observations. 526 

Prediction Reference   

 Absence Presence Total User Accuracy 

Absence 1147 151 1299 88% 

Presence 202 1198 1400 86% 

Total 1349 1349 2698  

Producer Accuracy 85% 89%   
 527 

 528 

 529 

Figure 10. AUC-ROC value by number of randomly selected predictors. 530 
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4.4 Question 3: Drivers for cottonwood presence and absence 531 

For predicting the presence/absence of young cottonwoods, the top four most important 532 

variables based on the RF-generated variable importance ranking include detrended DEM, 533 

channel proximity, inundation survival, lateral relative aspect, and the vector ruggedness 534 

measure (VRM), (Figure 11). Inundation survival was the fifth and the only hydrophysical 535 

variable from the RSRM in the top five. 536 

Partial dependence plots (Figure 12) and statistical distribution metrics (Table 6) found 537 

that detrended elevation, channel proximity, lateral relative aspect, and VRM exhibited 538 

biophysically realistic directionality, while inundation survival did not. For example, the 539 

probability of cottonwood presence increased from detrended elevations of 0 to 2 m before a 540 

sharp peak, then decreased as the elevation increased further. For detrended elevation, presence 541 

cells were found at a lower median elevation than the absence points. The upper quantile value 542 

for presence was equivalent to the lower quantile value for the absence cells. 543 

 544 

Table 6. Median, lower quantile (LQ), and upper quantile (UQ) values of the presence and 545 

absence points for the top five most important predictor variables. 546 

 Presence Absence 

Predictor LQ Median UQ LQ Median UQ 

Detrended Elevation (m) 1.3 1.6 2.4 2.4 3.3 4.1 

Channel Proximity (m) 0.0 5.4 19.9 14.1 36.4 65.5 

Inundation Survival 0 0 1 1 1 1 

Lateral Relative Aspect -0.96 -0.09 0.97 -0.78 0.53 0.95 

VRM 6E-05 2E-04 1E-03 8E-05 3E-04 1E-03 
 547 
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Based on these results, inundation survival was removed from the predictors and a new 548 

RF model was applied to compare model performance and the ranked variables of importance 549 

(Figure S5). Accuracy was similar, and the detrended elevation and channel proximity remained 550 

the two most important variables. 551 

 552 

 553 

Figure 11. Relative contribution of variable importance for the RF model’s predictions of 554 

cottonwood presence and absence. The most important variable is identified and assigned an 555 
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importance of 100%, with the other variables ranked relative to it. Each variable is explained in 556 

Table 4. 557 

 558 

 559 

Figure 12. Partial dependence presence probability for the top four predictor variables: A) 560 

detrended DEM (m), B) channel proximity (m), C) inundation survival, D) lateral relative aspect, 561 
A B 
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and E) vector ruggedness measure (VRM). The black line represents the mean marginal response 562 

when the other predictor variables were kept constant. 563 

 564 

5 DISCUSSION 565 

5.1 Understanding RSRM Results 566 

After comparing RSRM results with LYR locations of juvenile cottonwoods, the expert-567 

based model did not bioverify. The test seemed to result in random results that did not 568 

necessarily indicate habitat preference or avoidance. Factors explaining this outcome include (1) 569 

a time lag between the years analyzed with the RSRM and when field surveys occurred; (2) 570 

unrecognized importance of local environmental factors in establishing model parameters and 571 

initial conditions; and (3) unrecognized differential sensitivities of the parameter criteria used. 572 

While the RSRM produces seedling recruitment predictions for a seedling after its first 573 

year of life, it does not account for mortality that may have occurred after. Site selection for field 574 

data collection was based on the mode RSRM results for 2017-2021, so it is difficult to 575 

determine model accuracy if most seedlings died in earlier years. In addition, during the five 576 

years between the collection of data to create the 2017 DEM and the 2022 field season for this 577 

study, a few floods occurred and caused local geomorphic changes, potentially degrading model 578 

accuracy- though the same issue faced the RF model and it still yielded excellent performance. 579 

Many locations had minor to no changes, but particularly some depositional locations were 580 

highly prone to dynamism wherein the channel completely migrated and left behind abandoned 581 

or remnant channels. This resulted in the RSRM not being able to make predictions that reflected 582 

the current streambank or in areas with newly formed islands or land features. As erosional and 583 
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depositional processes are important for the creation or disappearance of new or bare surfaces 584 

and the location of the wetted channel for access to water are important for seedling recruitment, 585 

morphological changes need to be acknowledged. Without the monitoring of sites for each of 586 

these years the RSRM was used, a complete evaluation is difficult. 587 

While the criteria and thresholds set for the hydrophysical processes in the RSRM (Table 588 

1) was chosen based on existing scientific literature, site specific decisions based on local factors 589 

need to be considered (Stella et al., 2010). It is also difficult to compare criteria and results from 590 

differing studies due to variations in experimental designs and environmental conditions (Politti 591 

et al., 2018). An uncertainty exists in the criteria set for the RSRM, as chosen values may not 592 

apply well to the LYR or using the same threshold values for the entire extent of the LYR may 593 

have been too general. 594 

The sensitivity for one or more parameters could be high, impacting the success of results 595 

even if the values chosen were close to being suitable for the LYR. Smaller sections that were 596 

carefully selected and studied may have been necessary for a more successful validation of the 597 

RSRM. A propagation of error from the 2D modeled hydraulic inputs, interpolation of the WLE, 598 

and the modeling of the RSRM itself may have also impacted results. The RF relative 599 

importance analysis suggests that different variables have unequal roles, and so the choice of 600 

equal weighting of hydrophysical variables in the RSRM may require re-assessment. 601 

There could also be other factors or processes that were not considered in the 602 

development of the RSRM. Variables relating to the climate or location and number of mature 603 

cottonwoods that may release seeds relative to model predictions were not included. The RSRM 604 

considers areas within the floodplain inundation extent during the seed dispersal period as 605 

potential sites for germination, with no distinction between seeds dispersed by water, wind, or 606 
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the disruption of seed distribution due to dams. A larger density of juvenile cottonwoods was in 607 

the sampled sites located below Daguerre Point Dam when compared to the upstream sites. One 608 

factor that may be contributing to this is that more robust and expansive riparian forests with 609 

mature cottonwoods were observed in this area, potentially producing a larger number of seeds 610 

available to recruit on suitable surfaces. There could also be a role for the generally erosional 611 

setting upstream of DPD and depositional setting downstream of it (Carley et al., 2012), though 612 

that can change through time (Gervasi et al., 2021). 613 

5.2 Cottonwood Presence and Absence 614 

Despite some floods and morphodynamic changes from 2017 to 2022, the RF model was 615 

able to accurately predict juvenile cottonwood presence and absence in 2022 based on conditions 616 

in 2017, as indicated by performance assessment metrics. An accuracy of 87% was achieved for 617 

correctly predicting cottonwood presence or absence. Sensitivity was larger than the specificity, 618 

indicating the model was better at correctly predicting presence locations versus absence. AUC-619 

ROC was high, reflecting optimal performance by the RF (Fawcett, 2006). The RF had a strong 620 

performance, similar to other binary RF classification models (Cutler et al., 2007; Maxwell et al., 621 

2018), suggesting that the predictor variables provided enough useful environmental information 622 

to identify characteristics of cottonwood recruitment locations. 623 

The two most important variables from the RF were detrended elevation and channel 624 

proximity, which are indicators for depth to the water table and flood inundation depth. The 625 

directionality of the statistical relations aligned with observations in the field and expectations 626 

from cottonwood literature and is observed in a visual representation of the predicted probability 627 

of cottonwood presence along a small section of the LYR (Figure 13). Juvenile cottonwoods 628 
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were found to be at lower elevations and closer to the baseflow channel when compared to the 629 

absence points, likely having been deposited on the moist substrate during receding flows. 630 

Seedlings that had recruited along the active margin of the channel were mostly located in dense 631 

clusters on the edges of point and lateral bars, which have the geomorphic surfaces and sediment 632 

processes needed to create suitable bare surfaces for cottonwood seedling recruitment (Braatne et 633 

al., 1996, 2007; Mahoney & Rood, 1998). In one location of dense clustering, the migration of 634 

the active channel had created large extents of new bare surfaces, allowing a large band of new 635 

recruitment.  636 

 637 

 638 

Figure 13. An example of the RF's predicted probability of cottonwood presence (1 is presence, 639 

while 0 is absence), with surveyed juvenile cottonwood locations within the sampled field sites.  640 

 641 

Inundation survival was ranked as the 3rd most important variable, with presence points 642 

having a median value of lethal inundation and absence having favorable inundation value. This 643 

is opposite to what was initially hypothesized yet was analyzed for biophysical sensibility. 644 

Seedlings that recruited on new or bare surfaces close to the baseflow wetted area would 645 
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experience longer durations of inundation when compared to those that recruited at higher 646 

elevations. New recruits in risky locations may have been modeled in the lethal inundation zones 647 

by the RSRM. In addition, inundation depth, duration, and a combination of both have 648 

significant impacts on seedling health and survival (Auchincloss et al., 2012), highlighting the 649 

importance of having the right parameterization for this variable. Changes that have occurred in 650 

active areas of the channel margin since 2017 may also have an influence. Recruitment since 651 

2017 has occurred on newly created surfaces close to the channel that did not exist in 2017, 652 

which may have been modeled as inundated by the RSRM. The absence points were located 653 

further away from the active channel and may have experienced short or no periods of 654 

inundation. The ideal conditions of abandoned or remnant channels may have also been 655 

captured. Many abandoned channels below Daguerre Point Dam had been extensively colonized 656 

by juvenile cottonwoods, as the process of fine sediment deposition as the abandoned channel 657 

dewaters creates ideal moist surfaces and conditions for rapid colonization by pioneer species 658 

(Latella et al., 2024; Stella et al., 2011). Colonized abandoned channels above Daguerre Point 659 

Dam were not observed. 660 

Long term survival for many of these recruited seedlings is not probable due to their 661 

location relative to the river water surface level during higher flow events, as they are likely to be 662 

scoured when sediment is mobilized. Cottonwood seedlings that had survived beyond their first 663 

few growing seasons and large cottonwood trees were observed in backwater areas or within 664 

willow and cottonwood bands on point bars and high on the riverbank far from the late summer 665 

stage position when the field sampling occurred. 666 

Presence points were also more likely to face towards the river then away, as shown by 667 

the 4th most important variable being lateral relative aspect. The lateral relative aspect is linked 668 
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to hydraulic and sediment processes (Díaz Gómez et al., 2022), and may also be associated with 669 

the deposition of seeds that were transported by water. The vector ruggedness measure (VRM) 670 

ranked 5th in this study but was the most important influencer in another study on the 2017 671 

riparian vegetation of the LYR (Diaz-Gomez et al., 2025). The median VRM for presence and 672 

absence points were similar, but the presence points had a larger average VRM than the absence 673 

points. VRM expresses heterogeneity in the surface by representing both aspect and slope, 674 

indicating that micro-variability in the terrain is needed for cottonwoods to recruit and establish. 675 

5.3 Management Implications 676 

The ability to accurately predict cottonwood seedling recruitment locations along a 677 

dynamic, regulated river is useful for informing riparian revegetation efforts and planting 678 

projects. Areas where seedlings naturally recruit indicate desirable locations and environmental 679 

characteristics that could be used to maximize recruitment opportunities for cottonwoods when 680 

managing river flows during varying water years. The identification of recruitment areas and 681 

their environmental characteristics can also help to inform manual plantings, which are used as a 682 

common cottonwood revegetation method (González et al., 2018). Plantings have the benefit of 683 

human site selection in areas determined to be favorable and may not be as vulnerable as a newly 684 

germinated seedling. The success of a planting does not first depend on disturbance flows to 685 

create new, bare surfaces, and larger plantings with already present roots may not be as  686 

vulnerable to receding water table levels or scouring flows. Yet a revegetation effort may fail due 687 

to unaddressed underlying factors (Briggs et al., 1994; Stromberg, 2001) and fluvial 688 

morphodynamics can cause site suitability to change on a frequency set by the disturbance 689 

regime. While many planting projects may report high mortality rates, is this necessarily a sign 690 
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of failure? Natural mortality occurs annually in seedling recruitment, so some mortality should 691 

be expected with plantings too. A realistic planting mortality threshold for “success” should be 692 

defined to achieve the desired result for a revegetation effort, with a successful planting effort 693 

attempting to replicate the prolific seedling recruitment that occurs during the successful years 694 

that support sustainable populations. 695 

Although the RSRM was not calibrated, it was used in a way that is common in 696 

management practice, so study results have consequences for professional practice. Commonly, 697 

projects are done at sites lacking long-term monitoring data or the breadth of scientific 698 

investigations done over the last two decades on the LYR. As a result, practitioners rely on 699 

literature and their expert judgment for whatever models they are applying. The results of this 700 

study suggest that the underlying science to make a mechanistic predictive model is still missing 701 

key factors and the absence of model calibration introduces uncertainties in understanding 702 

variable importance and parameterization. It is particularly puzzling when the RF model yielded 703 

remarkably accurate results from just two very simple topographic inputs. Thus, how topography 704 

asserts itself through a “mechanistic chain” of cause and effect is highly significant and still 705 

elusive to simulate, necessitating further work. It may also be that the RSRM would be 706 

successful in a different setting than the LYR. 707 

Like many rivers around the world, the LYR is dynamic, so it is important to have tools 708 

that can be effective as rivers change. Full morphodynamic modeling is plausible but it is still 709 

experimental (Camporeale et al., 2013) and, at meter resolution, very computationally expensive 710 

for long river segments. The DEM and hydraulic spatial data from 2017 were used in this study 711 

to model recruitment through 2021, which meant that the morphological changes to the LYR 712 

since 2017 were not accounted for. This is a realistic constraint as agencies or organizations 713 
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involved in river management efforts may be limited by money, making infeasible yearly 714 

monitoring and the frequent updating of large river datasets (i.e., high resolution DEM, 715 

vegetation, substrate, etc.). The ability to accurately model cottonwood seedling recruitment, or 716 

the recruitment of other pioneer species, using datasets that are not updated on a frequent basis is 717 

a valuable tool for the planning and implementation of river revegetation projects. At this time, 718 

machine-learning modeling outperforms deterministic modeling in this context. 719 

6 CONCLUSIONS 720 

This study found that the deterministic RSRM did not bioverify, which could be due to 721 

time lags between the years modeled and when field work occurred, uncertainty in the 722 

parameters due to local conditions, or sensitivity in the chosen criteria. While the RSRM did not 723 

bioverify, the RF model was successful in predicting the presence or absence of juvenile 724 

cottonwoods. This indicates that there is enough useful information available about the 725 

environmental characteristics of juvenile cottonwood locations needed to predict recruitment. 726 

Detrended elevation and channel proximity were ranked as the two most important predictor 727 

variables by the RF. The methods described in this study could be used to help inform 728 

revegetation efforts through natural recruitment or manual plantings, potentially resulting in 729 

more cost-effective and successful projects. Care should be taken to study the characteristics of a 730 

given site to make sure model criteria are suitable. 731 
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1 INTRODUCTION 

Identifying ideal environmental conditions from a physical process viewpoint is complex, 

as the characteristics of a river system are a product of dynamic hydrogeomorphic processes.  

River bank and floodplain heterogeneity provide the physical template for the spatial pattern and 

development of varying riparian vegetation communities (Gregory et al., 1991). Topographic 

gradients impact the amount of energy and force of river flows, resulting in areas of erosion or 

deposition (Swanson et al., 1982). These sediment transport processes may impact vegetation 

through uprooting, burial, and erosion (Politti et al., 2018), and affect the substrate’s ability to 

retain the moisture needed for root growth by influencing sediment composition and grain size 

(Camporeale et al., 2013). Microtopography, or the localized topographic variability in soil 

surface elevation and roughness, also impacts the immediate hydrologic conditions experienced 

by a seed or plant (Moser et al., 2007; Pollock et al., 1998). Environmental characteristics 

resulting from varying microtopographic patterns may influence the distribution of plants 

through the creation of differing habitats (Titus, 2016). These variations in soil conditions and 

topography result in a high diversity of riparian plant species that can coexist (Naiman et al., 

1993). 

Successful natural recruitment of cottonwoods and other pioneer species is also crucial 

for the continuation of riparian forests. The ecophysiological requirements for cottonwood 

recruitment and survival are intricately linked to fluvial hydrologic and geomorphic processes. 

Recruitment of these pioneer species is largely dependent on large, infrequent flows, which 

provide the necessary physical disturbance to create open space for colonization, dispersal of 

seeds, and substrate moisture for early root growth and consequent seedling recruitment 

(Benjankar et al., 2020; Rood et al., 2003; Stella et al., 2010). After recruitment, seedling 
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survival is then reliant on environmental factors such as access to sunlight and a root growth rate 

comparable to recession rate declines of the water table in order to maintain access to moisture 

(Amlin & Rood, 2002; Benjankar et al., 2020; Stella et al., 2010). 

 

1.1 Cottonwood Seedling Recruitment 

In non-cohesive soils, uprooting vegetation may occur through Type I or Type II 

uprooting mechanisms, which respectively reference early germinated or mature vegetation 

(Edmaier et al., 2011). Type I uprooting occurs when the drag force exceeds the root resistance 

of the plant, while Type II uprooting is when the scouring near the base of the plant exposes the 

root system and decreases the root anchoring resistance until turning into Type I (Edmaier et al., 

2011). 

1.2 Riparian Vegetation Modeling 

Like statistical-empirical models in general, AI/ML models are most useful and can be 

highly accurate for professional practice when tuned on and applied to a local setting, staying 

within the range of conditions for which tuning was done. Relationships between species and the 

environment are often complex and nonlinear, allowing classification ML procedures to provide 

more meaningful analysis of ecological data then traditional statistical methods may be able to 

(Cutler et al., 2007; De’Ath & Fabricius, 2000).  
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3 METHODOLOGY 

3.1 Experimental Design 

Most spatial analyses were performed in ArcGIS Pro (ESRI, Redlands, CA), while 

machine learning modeling was performed in R. Most of the data in this study was collected in 

American customary units and then converted to SI units, leading to non-integer values being 

reported in some instances where one might expect the selection of integer values, such as raster 

cell size. 

3.2.1    Hydrophysical variables 

The preparation of the bed before seed dispersal and the scouring flows after dispersal are 

both analyzed through the dimensionless bed shear stress (𝜏 ∗) with the equation from Schwindt 

et al., (2019): 

 𝜏 ∗= !
"!"#(%&!)

[ (
).+),-##$(!...//."!")

]. (1) 

where 𝐷12 is the grain diameter approximated as 𝐷12=2.2𝐷)3 (Rickenmann & Recking, 2011), g 

is the gravitational acceleration (9.81 m/s2), s is sediment grain and water density ratio (2.68 

g/cm3), u is the water velocity (m/s), and h is the water depth (m). The dimensionless bed shear 

stress is calculated for each provided discharge and compared against the thresholds for partially 

and fully mobilized sediment transport in every cell. The flows during the 2 years prior to seed 

dispersal are analyzed to determine the bed preparation, while the flows after germination during 

the seed dispersal period through the following May are used for the scouring survival analysis. 
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Inverse distance weighted (IDW) interpolation is used in River Architect to spatially 

extrapolate the WSE raster for the river’s wetted area at a given discharge to estimate the water 

level elevation (WLE) beyond the wetted area (Larrieu et al., 2021). When WLE < DEM, then 

WLE is the groundwater level. When WLE > DEM, then it is the WSE of disconnected ponds, 

swales, and floodplain channels. Inundation duration is tracked for every cell when the WLE has 

a greater value than the DEM. Consecutive days of inundation are counted throughout the 

inundation survival period during the seed dispersal period after germination through the 

following May. 

Desiccation stress may occur if seedling roots cannot maintain contact with the soil 

moisture as WLE recedes. A recession rate of 1 cm/day was considered stressful and 2.5 cm/day 

was considered lethal (Amlin & Rood, 2002; Mahoney & Rood, 1998; Phillips & Pasternack, 

2022; Stella et al., 2010). The mortality coefficient is used to quantify the recession rate and is 

calculated using a 3-day moving average for each cell, as this accounts for a time lag associated 

with the capillary fringe and the rate at which seedlings can grow roots (Braatne et al., 2007; 

Burke et al., 2009). The desiccation survival period begins during the seed dispersal period when 

germination begins and ends when baseflow starts. 

3.2.2     Model inputs 

Silva and Pasternack, (2018) detailed the 2017 meter-resolution topo-bathymetric surveys 

and DEM production. Details about spatial coverage, resolution, and accuracy for the digital 

elevation model (DEM) used in this study are in Table S1. 
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Table S1. 2017 LYR topographic data summary from Pasternack, (2023). 

Attribute Description 
Aerial extent Entire river from Englebright Dam to the confluence with the 

Feather River including the Narrows Reach. 
Years of data collection Airborne LiDAR surveys were done on September 18 and 19, 2017. 

Multibeam echosounder surveys were done on August 16-18 and 
August 21, 2017. 

Bathymetric resolution 10.28 points per m2. 
Topographic resolution Ground and bathymetric bottom classified density of LiDAR data 

was 8.45 points/m2. 
Bathymetric uncertainty Comparison of 76 bathymetric (submerged or along the water’s 

edge) check points yielded a root mean square difference of 9.7 cm.   
Topographic uncertainty Comparison of 21 ground check points yielded a non-vegetated 

vertical accuracy of 4.2 cm. 
 

The 2017 LYR 2D hydrodynamic models were made using TUFLOW GPU (Huxley & 

Syme, 2016; WBM Pty Ltd, 2016). Table S2 provides a summary of model parameters and 

Table S3 includes performance metrics for 2D model validation.  

 

Table S2. TUFLOW GPU model parameters specifications from Pasternack, (2023). 

Model Parameter Specification 
Mesh Resolution 0.9144 m (3 feet) for flows < 849.5 m3/s 

3.04 m (10 feet) for flows > 849.5m3/s 
Cell Wet/Dry Depth* 0.09144 m 
Timestep Adaptive timestepping 
Discharge range of model 50 discharges spanning 300 to 198,885 cfs (unable to model 

155,977 and 198,885 for DPDMRY and MRYFR due to 
flooding into the Goldfields). 

Downstream WSE data/model 
source 

Stage-discharge rating curves (DPD with a weir equation, MRY 
with USGS rating table, FR with stacked polynomial approach). 

Eddy Viscosity Formulation Smagorinsky 
Eddy Viscosity Coefficient 0.5 
Eddy Viscosity Constant 0 m2/s for validation and 0.03716 m2/s for all other runs 
Manning's n < 28.32 m3/s One set with a global value followed by one set with a spatially 

distributed topographic surface roughness based on lidar data 
per method of Abu-Aly et al., (2014). 
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Manning's n ≥ 28.32 m3/s One set with a global value, one set with a spatially distributed 
topographic surface roughness, and one set with a combination 
of spatially distributed topographic surface roughness and 
spatially distributed vegetation roughness per method of Abu-
Aly et al., (2014). 

LiDAR test of WSE 
prediction accuracy 

Below DPD, the root mean square difference in observed versus 
predicted WSE was 0.11-0.16 ft with approximately 90-99% of 
points were within ± 0.25 ft. Above DPD, the root mean square 
difference in observed versus predicted WSE was 0.22-.23 ft 
with approximately 72-79% of points were within ± 0.25 ft. 

Wading depth prediction 
accuracy 

A total of 86 field observations of depth were made on 
September 26, 2017 in the Timbuctoo Bend Reach when 
discharge was 1,021 cfs, which yielded an absolute median 
error of 4% with a coefficient of 0.90 and a regression slope of 
0.99.  A total of 126 field observations of depth were made on 
October 10, 2017 in the Parks Bar Reach when discharge was 
1,082 cfs, which yielded an absolute median error of 5% with a 
coefficient of 0.87 and a regression slope 0.89. A total of 54 
field observations of depth were made on October 31, 2017 
below Daguerre Point Dam when discharge was 548 cfs, which 
yielded an absolute median error of 3% with a coefficient of 
0.99 and a regression slope of 1.00. 

Wading velocity magnitude 
prediction 

A total of 86 field observations of velocity were made on 
September 26, 2017 in the Timbuctoo Bend Reach when 
discharge was 1,021 cfs yielded an absolute median error of 
11% with a coefficient of 0.92 and a regression slope of 0.92.  
A total of 126 field observations of velocity were made on 
October 10, 2017 in the Parks Bar Reach when discharge was 
1,082 cfs, which yielded an absolute median error of 14% with 
a coefficient of 0.81 and a regression slope of 1.14.   A total of 
54 field observations of velocity were made on October 31, 
2017 below Daguerre Point Dam when discharge was 548 cfs, 
which yielded an absolute median error of 10% with a 
coefficient of 0.90 and a regression slope of 0.66. 

Kayak-based Lagrangian 
velocity magnitude prediction 
accuracy 

A total of 2,686 observation points of velocity were made below 
Highway 20 on December 5, 2017 yielding an absolute median 
error of 11% with a coefficient of determination of 0.85 and a 
regression slope of 0.86. A total of 3,702 observation points of 
velocity were made below Daguerre Point Dam on December 
21, 2017 yielding an absolute median error of 19% with a 
coefficient of determination of 0.82 and a regression slope of 
0.89. A total of 2,899 observation points of velocity were made 
below the Marysville gaging station on December 21, 2017 
yielding an absolute median error of 19% with a coefficient of 
determination of 0.72 and a regression slope of 0.88. 
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Kayak-based Lagrangian 
velocity direction prediction 
accuracy 

 

*This does not dry out cells if they have depths < 0.3 ft; it is just an internal parameter. 

 

Table S3. Summary of key metrics for all performance indicator variables. 

      Wading** Kayak**     

Domain 
Mann-ings 
n WSE* V D V 

Further tweaks 
possible? Performance 

EDH20 0.040 -0.05 6% -1% N/A 
Could increase 
Manning's n 
slightly 

Excellent 

H20DPD 0.035 0.12 12% -1.2% 4.3% Cannot be 
improved Excellent 

DPDMRY 0.034 0.07 .8% 3% 12.5 
Could decrease 
Manning's n 
slightly 

Excellent 

MRYFR 0.030 -0.04 N/A N/A 6.6 
Could increase 
Manning's n 
slightly 

Excellent 

*signed median deviation           

**signed median error %           

 

Table S4. Hydrologic data sources for each modeling domain. 

Domain Domain Description Flow Data 
1) MRYFR Reach extends from just upstream of 

the confluence with the Feather River 
to 3.4-km downstream of the 
Marysville gaging station. 

USGS Marysville gage (11421000) 

2) DPDMRY Reach extends from 3.4-km below 
the Marysville gaging station to just 
downstream of Daguerre Point Dam. 

USGS Marysville gage (11421000) 

3A) EDDPD 
(downstream)  

Reach extends from to just upstream 
of Daguerre Point Dam to confluence 
with Dry Creek 

The Yuba Water Agency has projected 
flows through 2017 for both above 
and below the Dry Creek tributary. A 
linear regression comparing the flows 
above and below Dry Creek was used 
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to find the slope for flows <1,000 cfs, 
1,000-10,000 cfs, and > 10,000 cfs.  
 
USGS Deer Creek gage (11418500) 
and Englebright near Smartsville gage 
(11418000) were added together. 
Flows were respectively multiplied by 
the slope for each category above. 

3B) EDDPD 
(upstream) 

Extends from just upstream of Dry 
Creek to Englebright Dam 

USGS Deer Creek gage (11418500) 
and Englebright near Smartsville gage 
(11418000) were added together 

 

3.2.5     LYR Field Data Collection 

A hand-held Trimble GeoXH mapping-grade GPS was used to navigate to and mark the 

boundaries of each site to be surveyed. If a slope, boundary, or other obstacle prevented close 

contact to the base of a tree, the GPS point was collected at the closest possible location along 

with the distance and compass direction to the tree; coordinates were adjusted later in ArcGIS 

Pro. 

Observation methods differed by plant height class. For cottonwoods < 2-m tall, a tape 

measure and caliper were used to measure height and stem diameters, respectively (Error! 

Reference source not found.). Diameters were measured above the root collar and at 50% of the 

height. If the tree was > 2-m tall, diameter at breast height (DBH) was recorded using a diameter 

tape, while height was measured using Pythagorean relationships between a set distance to the 

base of the tree and the angle to both the top of the canopy and the base of the tree. The angle 

was collected using a clinometer, while a measured distance from the base of the tree was 

collected using a long tape measure. 
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3.2.6     RSRM Bioverification 

To compute FR values, the percent utilization and percent availability were needed. The 

percent utilization for each class was determined by dividing the total number of juvenile 

cottonwoods across the sampled sites in each recruitment potential class by the total number of 

juvenile cottonwoods found in the whole dataset. The total area for each riparian recruitment 

potential class was calculated by summing the area of all sampled sites for a given class, using 

the 2017-2021 mode recruitment potential class values from field site selection. Total class areas 

were then summed to compute total model-prediction area. The percent area for each riparian 

recruitment potential class was then calculated by dividing each individual class area by the 

overall total area of predicted classes. 

Statistical bootstrapping is a method used for determining a measure of accuracy for 

sample estimates, with random sets of the same sample size created and used with the test 

metrics to quantify the statistical confidence limits and evaluate whether the observations behave 

like a random variable or not. This study did not require the additional steps with statistical 

bootstrapping, because the results were so extreme that they could not be random, given the 

sample sizes. 

3.3 Random Forest Algorithm 

RF’s use an ensemble of decision trees that are repeatedly aggregated using different 

combinations of explanatory variables to make a more accurate classification decision (Breiman, 

2001), and have been observed to have a high classification accuracy when compared to other 

classification methods (Cutler et al., 2007). RF’s allow for the exploration of prediction patterns 
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and processes through the use of both discrete and continuous explanatory variables, variable 

importance measures, and graphical representations. 

3.3.2     Predictors 

A correlation matrix was generated for the 16 topographic variables to identify any 

similar variables that provide the same information Figure S1. The Pearson correlation method 

was used, which produces values ranging from -1 to 1 and can only be used with continuous 

variables. A value of -1 indicates a total negative correlation, a value of 0 is no correlation, and 1 

is a total positive correlation. There was a negative correlation between curvature, profile, and 

TPI. There was also a negative correlation between roughness, pixel-scale topographic 

variability, slope, and TRI.  
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Figure S1. Correlogram using the Pearson coefficient for the 16 topographic predictor variables.  

3.3.3     Implementation 

The repeated k-fold cross validation effectively captures the generalization performance 

of the RF model, by ensuring that the predictive model’s skill report does not depend on the way 

that training and testing data are chosen, which in this case is the difference between the model 

estimated and true values (Kuhn & Johnson, 2013). 
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3.3.1 RF model performance 

A confusion matrix was used to visualize the accuracy and relative error among presence 

and absence classes using the hold out testing data, for each of the 10-folds from the 10 

repetitions (Table 5). Overall accuracy was calculated as the number of correct predictions to the 

overall number of predictions, relaying the effectiveness of the model. The producer’s accuracy 

portrays the sensitivity, the ratio of correctly classified presence points, and the specificity, the 

ratio of correctly classified absence points. The best sensitivity or specificity is 1.0, meaning all 

the predictions were correct, while 0.0 would be the worst. Omission and commission errors 

respectively represent the reference or classified cells omitted from the correct class, with a 

balance between these errors as the ideal. These metrics provide a deeper understanding of the 

performance of the model beyond the accuracy, portraying how well it classified both presence 

and absence, which may not result in the same ratio value. 

The ROC plots the proportion of true positives (i.e. proportion of presence points 

correctly identified as presence) on the y-axis against the proportion of false positives on the x-

axis (i.e. proportion of absence points classified as presence) (Fawcett, 2006). The ROC space is 

conceptually simple, with the point (0, 0) representing no positive classifications, the point (0, 1) 

representing unconditional positive classifications, and the point (1, 0) representing a perfect 

classification. The AUC indicates the area between the ROC curve and the diagonal from (0, 0) 

to (1, 1) and represents the probability that a randomly chosen positive instance will rank higher 

than a randomly chosen negative instance (Fawcett, 2006). It ranges from 0 to 1, with 0.5 

indicating random predictions, equaling the diagonal line the area is calculated between, and 1.0 

indicating a perfect classification, with no realistic classification model having an AUC<0.5 

(Fawcett, 2006). 
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A strength of the RF algorithm is the ability to generate a ranking of variable importance. 

Permutation-based feature importance was used, which is measured by the decrease in the 

model’s prediction accuracy when a variable is permuted (Breiman, 2001). Partial dependence 

plots were also used to further examine the marginal effect a variable has on the predicted 

outcome of the model when all other explanatory variables are held constant at their mean 

values. In this study, it would be the effect a predictor has on the probability of the RF model 

predicting cottonwood presence, allowing visual examination of how the probability of 

predicting presence increases or decreases as the variable value changes. 

To be considered an accurate and useful model, important variables were not only 

considered statistically important for prediction but also biophysically realistic and meaningful to 

understand the natural phenomenon of cottonwood recruitment. In evaluating the directionality 

of a predictor variable given its median and quartile values, if the model were to predict that 

presence points were at a detrended elevation corresponding to the bottom of pools in the river, 

then there might be high statistical predictability in the model but it is biophysically wrong, as 

cottonwoods cannot recruit at that type of permanently inundated location. 

4 RESULTS  

4.2 Question 1: Does the RSRM accurately predict cottonwood seedling presence? 

A summary of the calculation steps used to determine the FR is provided in Table S5 and 

Table S6, using the mode and maximum recruitment potential class values, respectively. Figure 

S2 portrays a similar result to Figure 9, where bioverification criteria one is met but fails criteria 

two. 
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Table S5. FR results for bioverification using the 2017-2021 mode recruitment potential class 

values.  

Recruitment Class % Predicted Area # Cottonwoods % Cottonwoods FR 

Lethal 0 88.3 1467 49.6 0.6 

Tolerable 0.125 0.8 63 2.1 2.7 

Stressful 0.25 6.1 5 0.2 0.0 

Favorable 0.5 4.0 14 0.5 0.1 

Optimal 1 0.9 1 0.0 0.0 

Outside Modeled 
Cells 

 1408 47.6   

 

Table S6. FR results for bioverification using the 2017-2021 maximum recruitment potential 

class values. 

Recruitment Class % Predicted Area # Cottonwoods % Cottonwoods FR 

Lethal 0 87.3 1485 48.9 0.6 

Likely 
Lethal 

0.0625 0.0 0 0.0 0.0 

Tolerable 0.125 0.6 63 2.1 3.2 

Stressful 0.25 4.9 9 0.3 0.1 

Favorable 0.5 5.6 25 0.8 0.1 

Optimal 1 1.6 1 0.0 0.0 
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Outside Modeled 
Cells 

 1451 47.8   

 

 

 

Figure S2. Forage ratio test results using the 2017-2021 maximum recruitment class values for 

the expert-parameterized implementation of the RSRM. 

 

4.3 Question 2: Does the RF Model accurately predict presence and absence? 

For cottonwood presence the producer’s accuracy (sensitivity) was 89% (omission error of 

11%) and the user’s accuracy was 86% (commission error of 14%). For cottonwood absence the 

producer’s accuracy (specificity) was 85% (omission error of 15%) and the user’s accuracy was 

88% (commission error of 12%). In other words, 89% of cottonwood presence cells were 

predicted to be presence cells, while 14% of absence cells were predicted to be presence cells. 
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On the other side, 85% of cottonwood absence cells were predicted as absence, while 12% of 

presence cells were predicted to be absence. An AUC-ROC value of 94% was reached (Figure 

S3). 

 

Figure S3. AUC-ROC value by number of randomly selected predictors. 

 

The RF was run multiple times with varying categories of the predictor variables to 

compare performance metrics (Table S7). Run 1 included only the hydrophysical variables from 

the RSRM and run 2 included only the topographic variables. Run 4 includes an additional 10 

topographic and hydraulic predictor variables. A topographic change raster from 2014 to 2017 

was used to identify areas of scour or deposition. An incremental wetted area raster simulated the 

wetted area of the river at different discharges to explore where juvenile cottonwoods were 

occurring relative to hydrologic regime and channel dimensions. Eight flow convergence routing 

landform (FCRL) rasters at varying discharges were also used. Flow convergence routing is a 
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morphodynamic mechanism and classifies locations in the river corridor based on hydraulics and 

sediment dynamics (MacWilliams et al., 2006). 

 

Table S7. Comparison of model performance metrics between the RF runs. 

Run Predictors 
Used  

# 
Predictors Accuracy Sensitivity Specificit

y p-value AUC
-ROC 

1 Hydrophysical 4 76% 71% 81% < 2e-16  78% 

2 Topographic 16 85% 87% 82% < 2e-16  93% 

3 Hydrophysical 
& Topographic 20 87% 89% 85% < 2e-16  94% 

4 
 Run 3 + 
Additional 
Rasters 

30 91% 93% 89% < 2.2e-16 97% 

 

4.4 Question 3: Drivers for cottonwood presence and absence? 

The detrended elevation, which was found to be the most important predictor variable, 

was a representation of the land surface when the down valley slope is removed while still 

preserving local topographic variations. It was assigned a relative importance of 100%, with all 

the following variables’ relative importance compared against it. The probability of cottonwood 

presence increased from detrended elevations of 0 to 2 m before a sharp peak, then decreased as 

the elevation increased further (Figure 12), which is consistent with the logic of cottonwood 

recruitment. Channel proximity was the 2nd ranked variable with relative importance of 71% 

(Figure 11). The predicted outcome of cottonwood presence decreased as the distance to the 

channel increased (Figure 12), which is also realistic. Inundation survival was 3rd at 43% in 

terms of predictive power, however, PDP showed a negative relationship between presence 
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probability and more favorable inundation metrics (i.e., the probability of presence predictions 

decreased as inundation become more favorable), which is not initially biophysically sensible 

(Figure 12). Lateral relative aspect was 4th at 21% (Figure 11). The presence probability 

initially decreased as lateral relative aspect increased from -1.0 (facing towards the river) to -

0.75, before stabilizing until the probability decreased again at around 0.75 (facing away from 

the river) (Figure 12), which is realistic. Vector ruggedness measure (VRM) was close behind 

the lateral relative aspect, with a relative importance of 20% (Figure 11). The probability of 

cottonwood presence being predicted increased rapidly following a VRM of 0.0, before 

decreasing after a sharp peak and then stabilizing after a value of 0.02 (Figure 12). 

The median, lower quartile, and upper quantile values for the top five explanatory 

variables was further examined to interpret biophysical realism. For detrended elevation, 

presence cells were found at a lower elevation than the absence points. The upper quantile value 

for presence was equivalent to the lower quantile value for the absence cells. Presence cells also 

occurred closer to the wetted baseflow channel than the absence points. For the inundation 

survival, presence cells occurred at a lethal inundation and the absence cells at a favorable 

inundation. The median lateral relative aspect for presence was negative, indicating pixels facing 

towards the river while the absence points faced away. The VRM was similarly very small for 

both presence and absence, with an average presence VRM of 0.0018 and absence VRM of 

0.0016.  

Figure S4 compares the ranking of predictor importance for each RF run. The detrended 

DEM and channel proximity were the most important predictors for all of the RF runs except run 

1, which only had the hydrophysical predictors. For run 4, the 84,400 cfs FCRL and the 

incremental wetted area were the 3rd and 4th most important, respectively. For run 3, the third and 
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fourth most important predictors were inundation survival and lateral relative aspect, while for 

run 2 they were lateral relative aspect and VRM. Inundation survival was the most important in 

run 1, with bed preparation the second most important at 3% and scour survival and recession 

rate close to 0%. When comparing runs 2 and 3, the general ranking of the topographic variables 

stayed relatively the same, with only a few small variations in the order in the less important 

variables. The relative importance shifted only a little when the hydrophysical variables were 

included. 
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Figure S4. The relative importance of the predictor variables for the RF runs 1-4. 

When the inundation survival was removed from the RF model, detrended elevation, 

channel proximity, vector ruggedness measure (VRM), and lateral relative aspect remained in the 

top four variables (Figure S5). The lateral relative aspect and VRM actually had a reduced 

importance from the original RF model (Figure 11), going from about 20% to 14% relative 
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importance. The RF model without inundation survival had the same overall accuracy of 87%. 

This highlights the overall high importance detrended elvevation and channel proximity have for 

predicting cottonwood presence and absence.  

 

Figure S5. Ranked variables of importance when inundation survival was removed. 
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